找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approaches to Probabilistic Model Learning for Mobile Manipulation Robots; Jürgen Sturm Book 2013 Springer-Verlag Berlin Heidelberg 2013 A

[復(fù)制鏈接]
樓主: GLAZE
31#
發(fā)表于 2025-3-26 22:55:20 | 只看該作者
Learning Manipulation Tasks by Demonstration,tential tasks of a manipulation robot beforehand. For example, robotic assistants operating in industrial contexts are frequently faced with changes in the production process. As a consequence, novel manipulation skills become relevant on a regular basis. For this reason, there is a need for solutio
32#
發(fā)表于 2025-3-27 02:35:02 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:10:31 | 只看該作者
https://doi.org/10.1007/978-3-658-02802-2nt in Section 2.2 several measures to evaluate the quality of a model and to select the best one. Finally, we introduce in Section 2.3 Bayesian networks as a tool to factorize high-dimensional learning problems into independent components.
35#
發(fā)表于 2025-3-27 14:17:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:34:55 | 只看該作者
37#
發(fā)表于 2025-3-27 23:45:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:05:35 | 只看該作者
https://doi.org/10.1007/978-3-322-82883-5er. In particular for robotic manipulation tasks, tactile sensing provides another sensor modality that can reveal relevant aspects about the object being manipulated, for example, to infer its identity, pose, and internal state.
39#
發(fā)表于 2025-3-28 08:04:10 | 只看該作者
Meyer-Hentschel Management Consultingn the production process. As a consequence, novel manipulation skills become relevant on a regular basis. For this reason, there is a need for solutions that enable normal users to quickly and intuitively teach new manipulation skills to a robot.
40#
發(fā)表于 2025-3-28 11:00:40 | 只看該作者
Meyer-Hentschel Management Consultingquire that robots function robustly in new situations while they are dealing with considerable amounts of noise and uncertainty. Therefore, the main objective of this work was to develop novel approaches that enable manipulation robots to autonomously acquire the models they need to successfully implement their service tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂水县| 岳西县| 昌黎县| 凯里市| 灵台县| 沙河市| 霞浦县| 区。| 湟源县| 岳普湖县| 延津县| 宣汉县| 连江县| 肥城市| 吉林省| 平远县| 克山县| 宾阳县| 明光市| 积石山| 济源市| 西吉县| 响水县| 开阳县| 调兵山市| 化州市| 甘谷县| 吉木萨尔县| 许昌县| 隆安县| 鲁甸县| 交城县| 宁安市| 佳木斯市| 遵义县| 彰化县| 大厂| 德格县| 德钦县| 贵港市| 宾阳县|