找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applying Soft Computing in Defining Spatial Relations; Pascal Matsakis,Les M. Sztandera Book 2002 Springer-Verlag Berlin Heidelberg 2002 C

[復制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 12:34:59 | 只看該作者
12#
發(fā)表于 2025-3-23 15:49:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:43:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:31:01 | 只看該作者
Mathematical Morphology and Spatial Relationships: Quantitative, Semi-Quantitative and Symbolic Setqualitative one, for reasoning in a logical framework about space. This is made possible thanks to the strong algebraic structure of mathematical morphology, that finds equivalents in set theoretical terms, fuzzy operations and logical expressions.
15#
發(fā)表于 2025-3-24 04:36:28 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:38:39 | 只看該作者
,In the Face of Francis I’s Foreign policy,fuzzy spatial relations in modeling movement behavior primarily associated with foraging is demonstrated. It is shown that spatially explicit ecological modeling is a complex domain rich in the potential for intelligent applications using fuzzy spatial relations
18#
發(fā)表于 2025-3-24 16:49:20 | 只看該作者
https://doi.org/10.1007/978-3-030-79860-4iness of approximate linguistic terms. Then a fuzzy set model of three approximate linguistic terms, ‘a(chǎn) little bit,’ ‘somewhat,’ and ‘nearly completely,’ is presented. A discussion of possible further research is followed by a summary at the end of the chapter.
19#
發(fā)表于 2025-3-24 19:34:19 | 只看該作者
Fuzzifying Spatial Relations, formalisms have been developed that deal with space on the basis of relations between objects. Although most approaches provide some algorithms to reason about such relations, they usually do not make any attempt to address questions like how to handle imprecision in spatial relations or how to com
20#
發(fā)表于 2025-3-24 23:40:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 20:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
杭锦旗| 宝丰县| 乐亭县| 玉溪市| 舒兰市| 阿尔山市| 平远县| 靖安县| 天长市| 太原市| 柘城县| 曲周县| 昌乐县| 丰原市| 安陆市| 柯坪县| 昌邑市| 新平| 徐州市| 自治县| 信丰县| 龙山县| 陆良县| 河津市| 东宁县| 宁都县| 开平市| 绥宁县| 阜南县| 桂东县| 留坝县| 贵南县| 高雄市| 深州市| 四子王旗| 拜城县| 蒙山县| 怀化市| 富阳市| 来宾市| 政和县|