找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied and Industrial Mathematics, Venice—2, 1998; Selected Papers from Renato Spigler Book 2000 Springer Science+Business Media Dordrecht

[復制鏈接]
樓主: Monomania
11#
發(fā)表于 2025-3-23 11:20:00 | 只看該作者
On the solution of the Whitham equations: An estimate of the genusollection of systems of hyperbolic [.] partial differential equations in Riemann invariant form [[.,[.].which is called Whitham equations. For . =0 (1.2) coincides with the dispersion-less KdV equation . which is called Burgers equation.
12#
發(fā)表于 2025-3-23 14:30:34 | 只看該作者
13#
發(fā)表于 2025-3-23 18:35:14 | 只看該作者
Elements for a Philosophy of Individuationmetry problems of Volterra type, for the problems concerned there take place exponential estimates of conditional stability, i. e., these problems are weakly ill-posed. The results presented in this paper were obtained by the author together with Akr. Kh. Begmatov (Samarkand State University).
14#
發(fā)表于 2025-3-24 00:31:12 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:55 | 只看該作者
Rationality and Experimental Economicsain a simple hyperbolic saddle then vortex stretching may take place. We show that the angle of the saddle can not close faster than a double exponential in time and there is no breakdown. Similar results are obtain in two dimensional models.
16#
發(fā)表于 2025-3-24 07:38:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:03 | 只看該作者
Epistemology of the Human Sciencesrators in abstract cones, providing a unified treatment for bounded (radiative transfer, neutron transport) and unbounded (kinetic theory of gases) domains. Numerical examples for the latter case (purely integral Boltzmann models) are presented, also comparing optimally relaxed Picard-like methods with an efficient Newton-like solver.
18#
發(fā)表于 2025-3-24 15:32:14 | 只看該作者
19#
發(fā)表于 2025-3-24 19:12:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:00 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 12:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广饶县| 弥渡县| 桂林市| 大关县| 泸定县| 霍城县| 博乐市| 江山市| 婺源县| 汉寿县| 堆龙德庆县| 库车县| 扎鲁特旗| 甘南县| 太和县| 和顺县| 保德县| 启东市| 沙湾县| 湄潭县| 咸宁市| 库伦旗| 都兰县| 宜宾县| 金华市| 城固县| 伊川县| 乐亭县| 嘉黎县| 磐石市| 宜春市| 峨眉山市| 海林市| 池州市| 蒙阴县| 桂阳县| 宝兴县| 靖远县| 西峡县| 绵阳市| 新龙县|