找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Statistical Learning; With Case Studies in Matthias Schonlau Textbook 2023 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 05:41:01 | 只看該作者
https://doi.org/10.1007/978-3-031-33390-3Statistical Learning; Machine Learning; Stata; Applications in the Social Sciences; Case Studies; Text Da
22#
發(fā)表于 2025-3-25 10:09:18 | 只看該作者
23#
發(fā)表于 2025-3-25 15:08:17 | 只看該作者
Textbook 2023s of data science in the field. Although mainly intended for upper undergraduate and graduatestudents in the social sciences, given its applied nature, the book will equally appeal to readers from other disciplines, including the health sciences, statistics, engineering and computer science..
24#
發(fā)表于 2025-3-25 18:34:58 | 只看該作者
25#
發(fā)表于 2025-3-25 22:39:49 | 只看該作者
Statistical Learning: Concepts,f interpretation and prediction. We introduce the bias-variance tradeoff as a central theme in statistical learning. Next, we introduce the Bayes error as the lowest possible error. The Bayes error is of limited use in practice because it requires knowledge of the true functional relationship betwee
26#
發(fā)表于 2025-3-26 03:34:05 | 只看該作者
Statistical Learning: Practical Aspects,cause the true functional relationship is unknown in practice, the Bayes error cannot be computed. Instead, we use different subsets of the data for training and evaluation. There are several techniques for splitting the data into subsets for this purpose. One such technique, cross-validation, uses
27#
發(fā)表于 2025-3-26 08:12:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:14:05 | 只看該作者
Lasso and Friends,aussian linear regression, choosing an L2 penalty leads to ridge regression and choosing an L1 penalty leads to the Lasso. The same penalties can be applied to logistic regression. Both penalties tend to reduce the magnitude of coefficients. Because the L1 penalty can reduce coefficients to zero, th
29#
發(fā)表于 2025-3-26 14:15:31 | 只看該作者
30#
發(fā)表于 2025-3-26 19:57:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 东台市| 赞皇县| 黄平县| 阿尔山市| 黄陵县| 高雄市| 民勤县| 吴堡县| 桦南县| 阿拉善左旗| 鹤山市| 松滋市| 遵化市| 美姑县| 扎赉特旗| 宁强县| 福州市| 宁波市| 曲靖市| 南京市| 阳西县| 乌苏市| 固镇县| 陆丰市| 沙雅县| 隆尧县| 永和县| 衡阳县| 台东市| 承德市| 松桃| 桓仁| 吉木萨尔县| 昌邑市| 丰城市| 驻马店市| 枝江市| 宁国市| 中牟县| 商丘市|