找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Reinforcement Learning with Python; With OpenAI Gym, Ten Taweh Beysolow II Book 2019 Taweh Beysolow II 2019 Reinforcement Learning.

[復(fù)制鏈接]
查看: 42220|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:42:26 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applied Reinforcement Learning with Python
期刊簡稱With OpenAI Gym, Ten
影響因子2023Taweh Beysolow II
視頻videohttp://file.papertrans.cn/161/160105/160105.mp4
發(fā)行地址Understand how to package and deploy solutions in Python that utilize deep learning.Includes specific topics such as Q learning and deep reinforcement-learning.Covers the latest reinforcement learning
圖書封面Titlebook: Applied Reinforcement Learning with Python; With OpenAI Gym, Ten Taweh Beysolow II Book 2019 Taweh Beysolow II 2019 Reinforcement Learning.
影響因子.Delve into the world of reinforcement learning algorithms and apply them to different use-cases via Python. This book covers important topics such as policy gradients and Q learning, and utilizes frameworks such as Tensorflow, Keras, and OpenAI Gym.. .Applied Reinforcement Learning with Python. introduces you to the theory behind reinforcement learning (RL) algorithms and the code that will be used to implement them. You will take a guided tour through features of OpenAI Gym, from utilizing standard libraries to creating your own environments, then discover how to frame reinforcement learning problems so you can research, develop, and deploy RL-based solutions...What You‘ll Learn.Implement reinforcement learning with Python?.Work with AI frameworks such as OpenAI Gym, Tensorflow, and Keras.Deploy and train reinforcement learning–based solutions via cloud resources.Apply practical applications of reinforcement learning. .....?..Who This Book Is For?..Data scientists, machine learning engineers and software engineers familiar with machine learning and deep learning concepts..
Pindex Book 2019
The information of publication is updating

書目名稱Applied Reinforcement Learning with Python影響因子(影響力)




書目名稱Applied Reinforcement Learning with Python影響因子(影響力)學(xué)科排名




書目名稱Applied Reinforcement Learning with Python網(wǎng)絡(luò)公開度




書目名稱Applied Reinforcement Learning with Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Reinforcement Learning with Python被引頻次




書目名稱Applied Reinforcement Learning with Python被引頻次學(xué)科排名




書目名稱Applied Reinforcement Learning with Python年度引用




書目名稱Applied Reinforcement Learning with Python年度引用學(xué)科排名




書目名稱Applied Reinforcement Learning with Python讀者反饋




書目名稱Applied Reinforcement Learning with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:19:19 | 只看該作者
http://image.papertrans.cn/b/image/160105.jpg
板凳
發(fā)表于 2025-3-22 00:27:23 | 只看該作者
Market Making via Reinforcement Learning,at fields where the answers are either not as objective nor completely solved. One of the best examples of this in finance, specifically for reinforcement learning, is market making. We will discuss the discipline itself, present some baseline method that isn’t based on machine learning, and then test several reinforcement learning–based methods.
地板
發(fā)表于 2025-3-22 06:04:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:18 | 只看該作者
Winona B. Vernberg,F. John Vernberg will shift to discussing implementation and how these algorithms work in production settings, we must spend some time covering the algorithms themselves more granularly. As such, the focus of this chapter will be to walk the reader through several examples of Reinforcement Learning algorithms that
6#
發(fā)表于 2025-3-22 13:11:46 | 只看該作者
Environmental Physiology of Marine Animalsders might find useful. Specifically, we will discuss Q learning, Deep Q Learning, as well as Deep Deterministic Policy Gradients. Once we have covered these, we will be well versed enough to start dealing with more abstract problems that are more domain specific that will teach the user about how t
7#
發(fā)表于 2025-3-22 20:31:56 | 只看該作者
Geotechnologies and the Environmentat fields where the answers are either not as objective nor completely solved. One of the best examples of this in finance, specifically for reinforcement learning, is market making. We will discuss the discipline itself, present some baseline method that isn’t based on machine learning, and then te
8#
發(fā)表于 2025-3-22 22:26:19 | 只看該作者
9#
發(fā)表于 2025-3-23 01:40:20 | 只看該作者
10#
發(fā)表于 2025-3-23 06:03:25 | 只看該作者
https://doi.org/10.1007/978-1-4842-5127-0Reinforcement Learning; Python; Machine Learning; Deep Learning; Artificial Intelligence; Open AI Gym; PyT
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴宁市| 阳谷县| 郧西县| 双峰县| 平阴县| 游戏| 望谟县| 油尖旺区| 北安市| 聂荣县| 陕西省| 久治县| 咸阳市| 三亚市| 汶上县| 阜城县| 连南| 平南县| 连平县| 漯河市| 湖州市| 庐江县| 青铜峡市| 玉溪市| 崇义县| 精河县| 黔江区| 长治县| 鄢陵县| 西城区| 湖口县| 芒康县| 沙雅县| 石景山区| 花垣县| 芦山县| 台前县| 芜湖县| 东台市| 姜堰市| 哈尔滨市|