找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Recommender Systems with Python; Build Recommender Sy Akshay Kulkarni,Adarsha Shivananda,V Adithya Krish Book 2023 Akshay Kulkarni,

[復(fù)制鏈接]
查看: 48488|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:40:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Recommender Systems with Python
期刊簡(jiǎn)稱Build Recommender Sy
影響因子2023Akshay Kulkarni,Adarsha Shivananda,V Adithya Krish
視頻videohttp://file.papertrans.cn/161/160091/160091.mp4
發(fā)行地址Covers hybrid recommender systems, deep learning-based techniques, and graph-based recommender systems.Includes step-by-step implementation of all techniques using Python with real-world examples.Expl
圖書封面Titlebook: Applied Recommender Systems with Python; Build Recommender Sy Akshay Kulkarni,Adarsha Shivananda,V Adithya Krish Book 2023 Akshay Kulkarni,
影響因子.This book will teach you how to build recommender systems with machine learning algorithms using Python. Recommender systems have become an essential part of every internet-based business today...You‘ll start by learning basic concepts of recommender systems, with an overview of different types of recommender engines and how they function. Next, you will see how to build recommender systems with traditional algorithms such as market basket analysis and content- and knowledge-based recommender systems with NLP. The authors then demonstrate techniques such as collaborative filtering using matrix factorization and hybrid recommender systems that incorporate both content-based and collaborative filtering techniques. This is followed by a tutorial on building machine learning-based recommender systems using clustering and classification algorithms like K-means and random forest. The last chapters cover NLP, deep learning, and graph-based techniques to build a recommender engine. Each chapter includes data preparation, multiple ways to evaluate and optimize the recommender systems, supporting examples, and illustrations..By the end of this book, you will understand and be able to build
Pindex Book 2023
The information of publication is updating

書目名稱Applied Recommender Systems with Python影響因子(影響力)




書目名稱Applied Recommender Systems with Python影響因子(影響力)學(xué)科排名




書目名稱Applied Recommender Systems with Python網(wǎng)絡(luò)公開度




書目名稱Applied Recommender Systems with Python網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Recommender Systems with Python被引頻次




書目名稱Applied Recommender Systems with Python被引頻次學(xué)科排名




書目名稱Applied Recommender Systems with Python年度引用




書目名稱Applied Recommender Systems with Python年度引用學(xué)科排名




書目名稱Applied Recommender Systems with Python讀者反饋




書目名稱Applied Recommender Systems with Python讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:40 | 只看該作者
Content-Based Recommender Systems,description of an item and a profile of the user’s interest. Content-based recommender systems are widely used in e-commerce platforms. It is one of the basic algorithms in the recommendation engine. Content-based filtering can be triggered for any event; for example, on click, on purchase, or add t
板凳
發(fā)表于 2025-3-22 02:22:56 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:36 | 只看該作者
Clustering-Based Recommender Systems,d, and classification-based systems face. A clustering technique is used to recommend the products/items based on the patterns and behaviors captured within each segment/cluster. This technique is good when data is limited, and there is no labeled data to work with.
5#
發(fā)表于 2025-3-22 10:07:25 | 只看該作者
6#
發(fā)表于 2025-3-22 16:34:34 | 只看該作者
Emerging Areas and Techniques in Recommender Systems, all these methods. Topics like deep learning and graph-based approaches are still improving. Recommender systems have been a major research interest for a long time. Newer, more complex, and more interesting avenues have been discovered, and research continues in the same direction.
7#
發(fā)表于 2025-3-22 17:56:46 | 只看該作者
8#
發(fā)表于 2025-3-22 21:48:39 | 只看該作者
9#
發(fā)表于 2025-3-23 04:05:34 | 只看該作者
https://doi.org/10.1007/978-3-030-82102-9The basic arithmetic method of calculating cosine similarity to find similar users falls into the memory-based approach. Each approach has pros and cons; depending on the use case, you must select the suitable approach.
10#
發(fā)表于 2025-3-23 06:52:07 | 只看該作者
https://doi.org/10.1007/978-3-642-58517-3rning methods, like clustering, matrix factorizations, and machine learning classification-based methods. This chapter continues the journey by implementing an end-to-end recommendation system using advanced deep learning concepts.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑植县| 文山县| 洞口县| 达拉特旗| 抚松县| 微博| 靖宇县| 新绛县| 呼图壁县| 建瓯市| 汶川县| 凯里市| 丹寨县| 邵武市| 峨边| 张北县| 丰原市| 阜平县| 凤庆县| 蓬莱市| 沈阳市| 双江| 株洲市| 海安县| 龙陵县| 五原县| 洛扎县| 中西区| 乐平市| 永福县| 科技| 漳浦县| 丰都县| 新宾| 公主岭市| 阜平县| 广宗县| 武清区| 高邮市| 秦皇岛市| 东光县|