找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Parallel Computing: Advanced Scientific Computing; 6th International Co Juha Fagerholm,Juha Haataja,Ville Savolainen Conference pro

[復(fù)制鏈接]
樓主: BRISK
41#
發(fā)表于 2025-3-28 16:53:22 | 只看該作者
42#
發(fā)表于 2025-3-28 20:58:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:51:05 | 只看該作者
A Data Mining Architecture for Clustered Environmentsibed system architecture for scalable and portable data mining architecture for clustered environment. The architecture contains modules for secure safe-thread communication, database connectivity, organized data management and efficient data analysis for generating global mining model.
44#
發(fā)表于 2025-3-29 07:09:08 | 只看該作者
Automated Fitting and Rational Modeling Algorithm for EM-Based S-Parameter Data full-wave electro-magnetic simulations. The adaptive algorithm doesn’t require any a priori knowledge of the dynamics of the system to select an appropriate sample distribution and an appropriate model complexity.
45#
發(fā)表于 2025-3-29 07:19:59 | 只看該作者
46#
發(fā)表于 2025-3-29 12:32:05 | 只看該作者
Aufbruch zu Beginn der 60er Jahre, warehouses and large databases is to integrate data mining with OLAP in DSS. Parallel and distributed processing are also two important components of successful large-scale data mining applications. In this paper, a high performance data mining scheme is proposed. The overall architecture and the mechanism of the system are described.
47#
發(fā)表于 2025-3-29 17:15:16 | 只看該作者
48#
發(fā)表于 2025-3-29 21:35:47 | 只看該作者
https://doi.org/10.1007/978-3-658-42798-6uch as rule induction, clustering algorithms, decision trees, genetic algorithms, and neural networks, the possible ways to exploit parallelism are presented and discussed in detail. Finally, some promising research directions in the parallel data mining research area are outlined.
49#
發(fā)表于 2025-3-30 00:14:56 | 只看該作者
50#
發(fā)表于 2025-3-30 05:30:32 | 只看該作者
Parallelism in Knowledge Discovery Techniquesuch as rule induction, clustering algorithms, decision trees, genetic algorithms, and neural networks, the possible ways to exploit parallelism are presented and discussed in detail. Finally, some promising research directions in the parallel data mining research area are outlined.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉寿县| 开封市| 太白县| 临夏县| 泗洪县| 灵武市| 甘泉县| 峨眉山市| 南木林县| 宝山区| 海淀区| 微山县| 鲜城| 黔西县| 德庆县| 林甸县| 瑞丽市| 上高县| 拜泉县| 修文县| 祁门县| 玛曲县| 潜江市| 喀喇沁旗| 丹寨县| 尤溪县| 景泰县| 江北区| 古交市| 玉林市| 丹阳市| 纳雍县| 合作市| 新巴尔虎右旗| 星座| 江山市| 松桃| 巴彦淖尔市| 子洲县| 屏东县| 赤峰市|