找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Multivariate Statistical Analysis; Wolfgang H?rdle,Léopold Simar Textbook 20072nd edition Springer-Verlag Berlin Heidelberg 2007 A

[復(fù)制鏈接]
樓主: FAULT
11#
發(fā)表于 2025-3-23 10:05:53 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:20 | 只看該作者
https://doi.org/10.1007/978-3-662-01075-4tools were based on either univariate (bivariate) data representations or on “slick” transformations of multivariate information perceivable by the human eye. Most of the tools are extremely useful in a modelling step, but unfortunately, do not give the full picture of the data set. One reason for t
13#
發(fā)表于 2025-3-23 20:51:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:52:16 | 只看該作者
15#
發(fā)表于 2025-3-24 03:15:37 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:12 | 只看該作者
https://doi.org/10.1007/978-3-658-40755-1variate or univariate devices used to reduce the dimensions of the observations. In the following three chapters, issues of reducing the dimension of a multivariate data set will be discussed. The perspectives will be different but the tools will be related.
17#
發(fā)表于 2025-3-24 13:49:21 | 只看該作者
https://doi.org/10.1007/978-3-658-40755-1 Principal components analysis has the same objective with the exception that the rows of the data matrix . will now be considered as observations from a .-variate random variable .. The principle idea of reducing the dimension of . is achieved through linear combinations. Low dimensional linear com
18#
發(fā)表于 2025-3-24 18:28:40 | 只看該作者
19#
發(fā)表于 2025-3-24 20:43:11 | 只看該作者
https://doi.org/10.1007/978-3-658-41831-1situations can arise. Given a data set containing measurements on individuals, in some cases we want to see if some natural groups or classes of individuals exist, and in other cases, we want to classify the individuals according to a set of existing groups. Cluster analysis develops tools and metho
20#
發(fā)表于 2025-3-24 23:34:53 | 只看該作者
https://doi.org/10.1007/978-3-031-36043-5 observations, into these known groups. For instance, in credit scoring, a bank knows from past experience that there are good customers (who repay their loan without any problems) and bad customers (who showed difficulties in repaying their loan). When a new customer asks for a loan, the bank has t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭泽县| 景洪市| 福海县| 云浮市| 洛阳市| 故城县| 宽甸| 壶关县| 九龙县| 鄂尔多斯市| 曲靖市| 西城区| 锡林郭勒盟| 榆中县| 新绛县| 石嘴山市| 巴林左旗| 柏乡县| 江华| 青田县| 建水县| 新巴尔虎右旗| 娄底市| 阳曲县| 习水县| 行唐县| 楚雄市| 潞城市| 和龙市| 筠连县| 冷水江市| 沁水县| 澄江县| 叶城县| 兴隆县| 许昌县| 临西县| 阿勒泰市| 枣强县| 江川县| 天长市|