找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Mathematics: Body and Soul; Volume 2: Integrals Kenneth Eriksson,Donald Estep,Claes Johnson Textbook 2004 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 04:18:06 | 只看該作者
https://doi.org/10.1007/978-3-8349-9918-4a for the primitive function in terms of known functions. For example we can give a formula for a primitive function of a polynomial as another polynomial. We will return in Chapter . to the question of finding analytical formulas for primitive functions of certain classes of functions. The Fundamen
22#
發(fā)表于 2025-3-25 10:06:16 | 只看該作者
https://doi.org/10.1007/978-3-663-13445-9initial conditions because the problem involves a second order derivative. We may compare with the first order initial value problem: .′(.) = ?.(.) for . > 0, .(0) = .., with the solution .(.) = exp(?.), which we studied in the previous chapter.
23#
發(fā)表于 2025-3-25 13:13:50 | 只看該作者
24#
發(fā)表于 2025-3-25 15:52:46 | 只看該作者
https://doi.org/10.1007/978-3-531-20000-2r unbounded intervals. We call such integrals ., or sometimes (more properly) . integrals. We compute these integrals using the basic results on convergence of sequences that we have already developed.
25#
發(fā)表于 2025-3-25 20:55:10 | 只看該作者
Isabell van Ackeren,Klaus Klemm, and an . with an infinite number of terms. A finite series does not pose any mysteries; we can, at least in principle, compute the sum of a finite series by adding the terms one-by-one, given enough time. The concept of an infinite series requires some explanation, since we cannot actually add an
26#
發(fā)表于 2025-3-26 02:15:21 | 只看該作者
27#
發(fā)表于 2025-3-26 06:46:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:30:16 | 只看該作者
Isabell van Ackeren,Klaus Klemm [0, 1] → ?. is a given bounded and Lipschitz continuous function, .. ∈ ?. is a given initial value, and . ≥ 1 is the dimension of the system. The reader may assume . = 2 or . = 3, recalling the chapters on analytic geometry in ?. and ?., and extend to the case . > 3 after having read the chapter on
29#
發(fā)表于 2025-3-26 12:56:26 | 只看該作者
30#
發(fā)表于 2025-3-26 20:36:48 | 只看該作者
Die Abwehr des Typhus bei den Feldarmeen,or . ∈ ?.. We recall that if . is non-singular with non-zero determinant, then the solution . ∈ ?. is theoretically given by Cramer’s formula. However if . is large, the computational work in using Cramer’s formula is prohibitively large, so we need to find a more efficient means of computing the so
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西昌市| 穆棱市| 稷山县| 灵璧县| 仙居县| 库尔勒市| 陕西省| 霍邱县| 永清县| 都匀市| 侯马市| 卢氏县| 湾仔区| 遵义县| 新密市| 东平县| 定远县| 二连浩特市| 竹北市| 横山县| 米林县| 汉寿县| 磐石市| 石景山区| 礼泉县| 九台市| 雅安市| 凤山市| 即墨市| 克拉玛依市| 龙川县| 廉江市| 阿拉善左旗| 盐边县| 西乡县| 渝北区| 板桥市| 大连市| 金湖县| 德化县| 嘉鱼县|