找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Applied Machine Learning and Data Analytics; 6th International Co M. A. Jabbar,Sanju Tiwari,Tasneem Bano Rehman Conference proceedings 2024

[復(fù)制鏈接]
樓主: 威風(fēng)
51#
發(fā)表于 2025-3-30 11:19:33 | 只看該作者
,Process Selection for?RPA Projects with?MDCM: The Case of?Izmir Bakircay University,tant for public universities as it helps streamline administrative processes, improve operational efficiency, and free up staff resources, allowing the institutions to focus more on delivering quality education and enhancing the overall student experience. However, selecting the right processes for
52#
發(fā)表于 2025-3-30 13:50:42 | 只看該作者
53#
發(fā)表于 2025-3-30 17:50:00 | 只看該作者
54#
發(fā)表于 2025-3-30 23:06:24 | 只看該作者
,Data-Driven Approach to?Network Intrusion Detection System Using Modified Artificial Bee Colony Algwork using the Artificial Bees Colonization Algorithm. A self-driven metric has been defined to determine the performance of a network that would detect the behavior of its nodes. This algorithmic metric is inspired by the Nature-Inspired Artificial Bees Colonization Algorithm. The end result is ran
55#
發(fā)表于 2025-3-31 04:48:27 | 只看該作者
56#
發(fā)表于 2025-3-31 06:31:50 | 只看該作者
An Efficient Image Dehazing Technique Using DSRGAN and VGG19,ss the issue of haze, image dehazing has become an area of significant importance. However, many current techniques for unsupervised picture dehazing rely on simplified atmospheric scattering models and a priori knowledge, which can result in inaccuracies and poor dehazing performance. The study of
57#
發(fā)表于 2025-3-31 11:25:08 | 只看該作者
Benchmarking ML and DL Models for Mango Leaf Disease Detection: A Comparative Analysis,rate detection of these diseases is crucial for enabling timely interventions and enhancing crop management strategies. In this study, we conduct a comprehensive comparison of various ML and DL models to effectively detect and classify common mango leaf diseases, as well as to differentiate between
58#
發(fā)表于 2025-3-31 14:42:11 | 只看該作者
Cassava Syndrome Scan a Pioneering Deep Learning System for Accurate Cassava Leaf Disease Classificces threats from a variety of leaf diseases, leading to substantial reduction in yield. Prompt and precise identification of these diseases is essential for implementing effective countermeasures and maintaining adequate food supply. Recently, deep learning methodologies have demonstrated remarkable
59#
發(fā)表于 2025-3-31 19:38:03 | 只看該作者
60#
發(fā)表于 2025-3-31 23:52:43 | 只看該作者
DESI: Diversification of E-Commerce Recommendations Using Semantic Intelligence,ramework, which is a query-driven, semantically oriented, Web 3.0 conforming ecommerce recommendation framework. The pre-process query was enriched using the Latent Semantic Indexing. Ontologies are generated from the ecommerce product dataset. The classification of the metadata takes place using th
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍州市| 松阳县| 玛纳斯县| 镇原县| 平远县| 阿勒泰市| 北流市| 盘锦市| 依兰县| 大邑县| 藁城市| 稻城县| 邵阳市| 永靖县| 循化| 邯郸县| 南和县| 静安区| 玉龙| 平顶山市| 上犹县| 岑巩县| 荃湾区| 新安县| 清水河县| 永登县| 于田县| 岑巩县| 三明市| 花莲县| 扬州市| 宝山区| 双牌县| 东阿县| 社旗县| 茂名市| 上思县| 景泰县| 普兰店市| 宜昌市| 曲阜市|