找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Applied Machine Learning; David Forsyth Textbook 2019 Springer Nature Switzerland AG 2019 machine learning.naive bayes.nearest neighbor.SV

[復(fù)制鏈接]
樓主: 母牛膽小鬼
51#
發(fā)表于 2025-3-30 10:32:56 | 只看該作者
52#
發(fā)表于 2025-3-30 15:10:34 | 只看該作者
High Dimensional Data is hard to plot, though Sect. 4.1 suggests some tricks that are helpful. Most readers will already know the mean as a summary (it’s an easy generalization of the 1D mean). The covariance matrix may be less familiar. This is a collection of all covariances between pairs of components. We use covaria
53#
發(fā)表于 2025-3-30 16:48:18 | 只看該作者
Principal Component Analysistem, we can set some components to zero, and get a representation of the data that is still accurate. The rotation and translation can be undone, yielding a dataset that is in the same coordinates as the original, but lower dimensional. The new dataset is a good approximation to the old dataset. All
54#
發(fā)表于 2025-3-30 22:31:13 | 只看該作者
Low Rank Approximationsate points. This data matrix must have low rank (because the model is low dimensional) . it must be close to the original data matrix (because the model is accurate). This suggests modelling data with a low rank matrix.
55#
發(fā)表于 2025-3-31 01:40:23 | 只看該作者
56#
發(fā)表于 2025-3-31 06:32:09 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榕江县| 孙吴县| 长宁区| 广平县| 衡阳县| 思茅市| 彭山县| 喀什市| 桓仁| 明溪县| 屯留县| 广饶县| 唐河县| 博爱县| 茶陵县| 鲁山县| 土默特左旗| 比如县| 山东省| 抚州市| 寿阳县| 昌黎县| 罗江县| 汾西县| 高雄市| 台湾省| 巩义市| 宽城| 抚宁县| 勃利县| 奉节县| 南昌市| 六枝特区| 鹤岗市| 阜宁县| 京山县| 威信县| 华坪县| 隆安县| 马龙县| 和田市|