找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Intelligence; First International De-Shuang Huang,Prashan Premaratne,Changan Yuan Conference proceedings 2024 The Editor(s) (if ap

[復制鏈接]
樓主: 信賴
51#
發(fā)表于 2025-3-30 08:15:29 | 只看該作者
Visual Servo Control System for AUV Stabilization placed on the bottom of AUV, which takes pictures of the seabed under the device. A special visual marker, represented by an ArUco(Augmented Reality University of Cordoba) marker, is pre-installed on the seabed. The proposed method makes it possible to stabilize the control object in the hover mode
52#
發(fā)表于 2025-3-30 15:23:05 | 只看該作者
53#
發(fā)表于 2025-3-30 19:50:05 | 只看該作者
Multi-scale Texture Network for Industrial Surface Defect Detectionhat addresses this challenge by effectively analyzing textures at various scales. The proposed network incorporates a “Multi-Scale Texture Feature Processing” module to generate multi-scale texture tokens for comprehensive surface analysis. Additionally, a “Multi-Head Feature Encoding” mechanism cap
54#
發(fā)表于 2025-3-30 21:55:11 | 只看該作者
55#
發(fā)表于 2025-3-31 04:33:34 | 只看該作者
Advancing Short-Term Traffic Congestion Prediction: Navigating Challenges in Learning-Based Approachros and cons among different approaches with test results. In addition, this paper develops a perspective synthesis of the current status quo that could be the next steps for a more accurate, more efficient prediction. In the end, the paper yields conclusions about possible future research endeavors
56#
發(fā)表于 2025-3-31 05:08:46 | 只看該作者
Transformer-Based Multi-industry Electricity Demand Forecastingd forecasting model that utilizes transformer networks and fully connected neural networks (FC) for electricity demand forecasting in different industries within a city. The model employs the encoder part of the transformer to capture the dependencies between different influencing factors and uses F
57#
發(fā)表于 2025-3-31 11:55:07 | 只看該作者
58#
發(fā)表于 2025-3-31 14:00:36 | 只看該作者
A Broader Study of Spectral Missing in Multi-spectral Vehicle Re-identification and multi-stream learning in spectral missing. The result shows that the most advanced multi-stream learning performed better than the one-stream learning models. In some cases, the performance of multi-stream learning is even worse than that of one-stream learning methods in Siamese spectral missi
59#
發(fā)表于 2025-3-31 21:22:10 | 只看該作者
60#
發(fā)表于 2025-4-1 00:56:31 | 只看該作者
Design and Utilization of an Auto-Visual-Inspection Composite System for Suspension Cables with Fastspension cables of arch bridges strongly evidence the effectiveness of the proposed robot, and the utilization of YOLOv7 demonstrates the rapid, autonomous, and accurate identification of flaw features.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
和平县| 都匀市| 新化县| 成都市| 司法| 赫章县| 成都市| 读书| 五家渠市| 三亚市| 石柱| 冕宁县| 康乐县| 晴隆县| 铁岭县| 澄城县| 丹江口市| 阿荣旗| 富顺县| 岫岩| 湖北省| 宜川县| 阿尔山市| 三亚市| 江孜县| 高安市| 巴马| 西丰县| 清水河县| 大安市| 孙吴县| 莱阳市| 汝城县| 临沂市| 长宁县| 碌曲县| 沙湾县| 思南县| 凤阳县| 洪泽县| 河东区|