找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Geography and Geoinformatics for Sustainable Development; Proceedings of ICGGS Wuttichai Boonpook,Zhaohui Lin,Parichat Wetchayont C

[復制鏈接]
樓主: opioid
41#
發(fā)表于 2025-3-28 17:45:52 | 只看該作者
Measurement of PM10, PM2.5, NO2, and SO2 Using Sensors,amely, MS-1, MS-2, and MS-3. Current study results are compared with the previous studies. The results obtained in the current study have been compared with the previous studies. The percentage difference for PM. is found to be (?) 107.28% between MS-1 and reference study. The difference for MS-2 an
42#
發(fā)表于 2025-3-28 22:24:01 | 只看該作者
43#
發(fā)表于 2025-3-29 01:07:36 | 只看該作者
Noise Mapping of Different Zones in an Urban Area During Deepawali Festival,0.60?dBA, and 67.10?dBA, respectively. Based on the observations, noise maps for all 3?days have been prepared using inverse distance weighted (IDW) interpolation method in ArcGIS. Results of L., L., and L. are plotted using GIS tools. Comparison with the standard limits has also been carried out. I
44#
發(fā)表于 2025-3-29 05:31:05 | 只看該作者
Digital Twins in Farming with the Implementation of Agricultural Technologies,ant solutions for efficient food production. We also perform a case study on a digital twin paradigm in a solar energy-supplied farm and its contribution to two of the Sustainable Development Goals (SDGs): “Zero hunger” and “Affordable and clean energy.” Furthermore, we outline the purpose of broad
45#
發(fā)表于 2025-3-29 09:41:42 | 只看該作者
46#
發(fā)表于 2025-3-29 12:47:01 | 只看該作者
47#
發(fā)表于 2025-3-29 19:30:32 | 只看該作者
Machine Learning Approach with Environmental Pollution and Geospatial Information for Mapping Poverlearning models: XGboost, lasso, random forest, and ridge regression for poverty estimation. The result of the study reveals that poverty-related areas are highly correlated with environmental pollution. The random forest technique has the best performance prediction among the four methods, with an
48#
發(fā)表于 2025-3-29 19:58:39 | 只看該作者
Sugarcane and Cassava Classification Using Machine Learning Approach Based on Multi-temporal Remoteurvey was used to assess the classification performance and resulted in 68% accuracy for sugarcane and cassava classification. Multi-temporal remote sensing can aid in the mapping of sugarcane and cassava. The developed approach can be used for crop mapping, management, and estimation of crop produc
49#
發(fā)表于 2025-3-30 00:46:54 | 只看該作者
50#
發(fā)表于 2025-3-30 06:21:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 14:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
德州市| 平湖市| 天峨县| 德阳市| 巴林右旗| 海城市| 平武县| 泸水县| 桐梓县| 富平县| 剑川县| 涪陵区| 新宁县| 临桂县| 山西省| 乌拉特前旗| 建阳市| 拜泉县| 安化县| 哈巴河县| 龙游县| 长子县| 昔阳县| 张家界市| 南投县| 满城县| 鄄城县| 获嘉县| 铜山县| 辛集市| 高要市| 东至县| 宁安市| 肇东市| 中阳县| 高要市| 习水县| 扶风县| 陇南市| 萨嘎县| 安国市|