找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Deep Learning with TensorFlow 2; Learn to Implement A Umberto Michelucci Book 2022Latest edition Umberto Michelucci 2022 Deep Learn

[復(fù)制鏈接]
查看: 33354|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:54:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Deep Learning with TensorFlow 2
期刊簡稱Learn to Implement A
影響因子2023Umberto Michelucci
視頻videohttp://file.papertrans.cn/160/159776/159776.mp4
發(fā)行地址Covers Debugging and optimization of deep learning techniques with TensorFlow 2.0 and Python.Covers recent advances in autoencoders and multitask learning.Explains how to build models and deploy them
圖書封面Titlebook: Applied Deep Learning with TensorFlow 2; Learn to Implement A Umberto Michelucci Book 2022Latest edition Umberto Michelucci 2022 Deep Learn
影響因子.Understand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects..This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks..All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be openeddirectly in Google Colab (no need to install anything locally) or downloaded on your own machine and tested locally..You will:?.? Understand the fundamental concepts of how neural networks work.? Learn the fundamental i
Pindex Book 2022Latest edition
The information of publication is updating

書目名稱Applied Deep Learning with TensorFlow 2影響因子(影響力)




書目名稱Applied Deep Learning with TensorFlow 2影響因子(影響力)學(xué)科排名




書目名稱Applied Deep Learning with TensorFlow 2網(wǎng)絡(luò)公開度




書目名稱Applied Deep Learning with TensorFlow 2網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Deep Learning with TensorFlow 2被引頻次




書目名稱Applied Deep Learning with TensorFlow 2被引頻次學(xué)科排名




書目名稱Applied Deep Learning with TensorFlow 2年度引用




書目名稱Applied Deep Learning with TensorFlow 2年度引用學(xué)科排名




書目名稱Applied Deep Learning with TensorFlow 2讀者反饋




書目名稱Applied Deep Learning with TensorFlow 2讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:20 | 只看該作者
Hands-on with a Single Neuron,In this chapter, you learn what are the main components of the neuron. You also learn how to solve two classical statistical problems (i.e., linear regression and logistic regression) by using a neural network with just one neuron. To make things a bit more fun, you do that using real datasets. We d
板凳
發(fā)表于 2025-3-22 03:22:40 | 只看該作者
地板
發(fā)表于 2025-3-22 06:34:38 | 只看該作者
5#
發(fā)表于 2025-3-22 09:42:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:25:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:21:39 | 只看該作者
A Brief Introduction to Recurrent Neural Networks,rrent one. Networks with this architecture are called . or RNNs. This chapter is a superficial description of how RNNs work, with one small application that should help you better understand their inner workings. A full explanation of RNNs would require multiple books, so the goal of this chapter is
8#
發(fā)表于 2025-3-22 23:26:37 | 只看該作者
Autoencoders, discuss what they are, what their limitations are, the typical use cases, and then look at some examples. We start with a general introduction to autoencoders, and we discuss the role of the activation function in the output layer and the loss function. We then discuss what the reconstruction error
9#
發(fā)表于 2025-3-23 03:54:26 | 只看該作者
Generative Adversarial Networks (GANs), was invented by Goodfellow and colleagues in 2014. The two networks help each other with the final goal of being able to generate new data that looks like the data used for training. For example, you may want to train a network to generate human faces that are as realistic as possible. In this case
10#
發(fā)表于 2025-3-23 06:12:35 | 只看該作者
Lecture Notes in Computer Sciencerly stopping. You learn how these methods help prevent the problem of overfitting and help you achieve much better results from your models when applied correctly. We look at the mathematics behind the methods and at how to implement them correctly in Python and Keras.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中牟县| 澄江县| 西乌| 郸城县| 盈江县| 武乡县| 武穴市| 象州县| 龙州县| 天长市| 鄱阳县| 永吉县| 师宗县| 万载县| 土默特右旗| 定兴县| 前郭尔| 安宁市| 盐城市| 黔西县| 辽阳县| 扶绥县| 孟连| 莱阳市| 元谋县| 三河市| 河南省| 谢通门县| 抚远县| 错那县| 南投市| 舞钢市| 红安县| 泗水县| 黄平县| 兴海县| 呼伦贝尔市| 平和县| 来凤县| 永川市| 越西县|