找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Computational Technologies; Proceedings of ICCET Brijesh Iyer,Tom Crick,Sheng-Lung Peng Conference proceedings 2022 The Editor(s) (

[復(fù)制鏈接]
查看: 33849|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:10:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applied Computational Technologies
期刊簡稱Proceedings of ICCET
影響因子2023Brijesh Iyer,Tom Crick,Sheng-Lung Peng
視頻videohttp://file.papertrans.cn/160/159692/159692.mp4
發(fā)行地址Presents research works in the field of applied computational technologies.Provides original works presented at ICCET 2022 held in Lonere, India.Serves as a reference for researchers and practitioners
學(xué)科分類Smart Innovation, Systems and Technologies
圖書封面Titlebook: Applied Computational Technologies; Proceedings of ICCET Brijesh Iyer,Tom Crick,Sheng-Lung Peng Conference proceedings 2022 The Editor(s) (
影響因子.This book is a collection of best selected research papers presented at?7th?International Conference on Computing in Engineering and Technology (ICCET 2022), organized by Dr. Babasaheb Ambedkar Technological University, Lonere, India, during February 12 – 13, 2022. Focusing on frontier topics and next-generation technologies, it presents original and innovative research from academics, scientists, students, and engineers alike. The theme of the conference is Applied Information Processing System..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Applied Computational Technologies影響因子(影響力)




書目名稱Applied Computational Technologies影響因子(影響力)學(xué)科排名




書目名稱Applied Computational Technologies網(wǎng)絡(luò)公開度




書目名稱Applied Computational Technologies網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Computational Technologies被引頻次




書目名稱Applied Computational Technologies被引頻次學(xué)科排名




書目名稱Applied Computational Technologies年度引用




書目名稱Applied Computational Technologies年度引用學(xué)科排名




書目名稱Applied Computational Technologies讀者反饋




書目名稱Applied Computational Technologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:35:22 | 只看該作者
Conference proceedings 2022T 2022), organized by Dr. Babasaheb Ambedkar Technological University, Lonere, India, during February 12 – 13, 2022. Focusing on frontier topics and next-generation technologies, it presents original and innovative research from academics, scientists, students, and engineers alike. The theme of the
地板
發(fā)表于 2025-3-22 05:56:00 | 只看該作者
5#
發(fā)表于 2025-3-22 10:47:29 | 只看該作者
6#
發(fā)表于 2025-3-22 15:57:07 | 只看該作者
2190-3018 ndia.Serves as a reference for researchers and practitioners.This book is a collection of best selected research papers presented at?7th?International Conference on Computing in Engineering and Technology (ICCET 2022), organized by Dr. Babasaheb Ambedkar Technological University, Lonere, India, duri
7#
發(fā)表于 2025-3-22 18:16:25 | 只看該作者
A Planned Policy for the Designer,es. Additionally, most of the recent deep learning-based approaches have complex network structures. In this work, a simple but optimal deep learning-based convolutional neural network has been developed, which not only performs accurate classification but has also been assessed through standard evaluation measures.
8#
發(fā)表于 2025-3-23 00:33:01 | 只看該作者
Engineering Design Applications IVlevel questions. Two integrated deep learning techniques, namely BI-LSTM with attention and BIGRU-CNN with attention, have been implemented for more useful question classification in QAS, and it is observed that BIGRU-CNN with attention gives good performance with an accuracy of 84.5 than BI-LSTM with attention.
9#
發(fā)表于 2025-3-23 03:06:14 | 只看該作者
Classification of Traffic Signs Using Deep Learning-Based Approach for Smart Citieses. Additionally, most of the recent deep learning-based approaches have complex network structures. In this work, a simple but optimal deep learning-based convolutional neural network has been developed, which not only performs accurate classification but has also been assessed through standard evaluation measures.
10#
發(fā)表于 2025-3-23 07:31:16 | 只看該作者
Attention Based Deep Learning Techniques for Question Classification in Question Answering Systemslevel questions. Two integrated deep learning techniques, namely BI-LSTM with attention and BIGRU-CNN with attention, have been implemented for more useful question classification in QAS, and it is observed that BIGRU-CNN with attention gives good performance with an accuracy of 84.5 than BI-LSTM with attention.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
客服| 拜城县| 巴中市| 柳州市| 柏乡县| 金平| 灯塔市| 山阴县| 锡林浩特市| 汤原县| 乃东县| 临澧县| 东乡族自治县| 揭西县| 金乡县| 九江县| 瑞金市| 牟定县| 象州县| 凤台县| 横山县| 枣庄市| 广平县| 靖西县| 黔东| 资兴市| 马尔康县| 新密市| 偏关县| 东源县| 贞丰县| 东乌珠穆沁旗| 葵青区| 马龙县| 克什克腾旗| 抚远县| 泰来县| 武陟县| 仙居县| 丰都县| 平定县|