找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Computational Electromagnetics; State of the Art and Nikolaos K. Uzunoglu,Konstantina S. Nikita,Dimitra Book 2000 Springer-Verlag B

[復(fù)制鏈接]
樓主: 磨損
21#
發(fā)表于 2025-3-25 04:08:04 | 只看該作者
Engineering Applications of Neural Networksts the application of the method to structures not exceeding few wavelengths cubed. A possibility to extend the MoM to larger structures are large-domain procedures. This chapter is aimed at describing such a procedure, to illustrate it on a number of examples, and to demonstrate its relative advant
22#
發(fā)表于 2025-3-25 07:42:22 | 只看該作者
23#
發(fā)表于 2025-3-25 13:37:02 | 只看該作者
https://doi.org/10.1007/978-3-319-23983-5 field in an orthogonal vector space. The excitation or the position of the antenna elements are found in a relatively simple and easy to use form. Several examples show the applicability of the method.
24#
發(fā)表于 2025-3-25 17:43:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:53 | 只看該作者
Engineering Applications of Neural Networks at the Radiation Laboratory of the Massachusetts Institute of Technology, Cambridge, Massachusetts (USA) [1], in connection with the development of the Microwave Radar [2]. The main reason for this progress was the introduction of . to represent complex waveguide discontinuities in terms of simple
26#
發(fā)表于 2025-3-26 03:58:10 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:54:17 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:38 | 只看該作者
https://doi.org/10.1007/978-3-319-65172-9ematical truncation of the finite element mesh. More specifically, the boundary integral which appears in the weak wave equation can no longer be eliminated by enforcing Neumann or Dirichlet boundary conditions at the boundaries of the domain.
30#
發(fā)表于 2025-3-26 17:10:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 广宁县| 浮梁县| 东乡| 铁岭市| 繁峙县| 沙河市| 玛多县| 台安县| 苏尼特右旗| 华池县| 泾源县| 杂多县| 綦江县| 潜山县| 康定县| 厦门市| 襄汾县| 吉隆县| 台安县| 增城市| 湖北省| 安图县| 伊春市| 成武县| 黔江区| 梅州市| 绥芬河市| 昌乐县| 明水县| 斗六市| 岐山县| 绵竹市| 如皋市| 乡城县| 盖州市| 潜山县| 内江市| 屏山县| 阿巴嘎旗| 海宁市|