找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Optimization and Soft Computing; ICNAAO-2021, Varanas Tanmoy Som,Debdas Ghosh,Dayaram Sahu Conference proceedings 2023 Th

[復(fù)制鏈接]
樓主: 決絕
41#
發(fā)表于 2025-3-28 14:34:26 | 只看該作者
Energy and Environmental Scenario of Indiacted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
42#
發(fā)表于 2025-3-28 22:22:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:51:13 | 只看該作者
Fractional Operator Associated with the Fractal Integral of A-Fractal Functioncted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
44#
發(fā)表于 2025-3-29 03:16:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:52 | 只看該作者
Conference proceedings 2023at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, sig
46#
發(fā)表于 2025-3-29 15:17:18 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:24 | 只看該作者
48#
發(fā)表于 2025-3-29 22:37:26 | 只看該作者
49#
發(fā)表于 2025-3-30 00:19:01 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:34 | 只看該作者
A Note on?Complex-Valued Fractal Functions on?the?Sierpiński Gasketvalued fractal operator defined on the Sierpiński gasket (. in short). We also calculate the bound for the perturbation error on .. Furthermore, we prove that the complex-valued fractal operator is bounded. In the last part, we establish the connection between the norm of the real-valued fractal operator and the complex-valued fractal operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 柏乡县| 焉耆| 汉中市| 冀州市| 濉溪县| 全南县| 石楼县| 廉江市| 伊春市| 东方市| 出国| 连江县| 汕尾市| 裕民县| 荣成市| 安宁市| 庆阳市| 财经| 武清区| 喀什市| 庄河市| 芜湖县| 阿拉善盟| 仁化县| 博罗县| 凤山县| 三门峡市| 南昌县| 泗阳县| 台北市| 渝北区| 迭部县| 桂平市| 牙克石市| 永康市| 阳春市| 双鸭山市| 疏附县| 嘉善县| 湖南省|