找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Optimization and Soft Computing; ICNAAO-2021, Varanas Tanmoy Som,Debdas Ghosh,Dayaram Sahu Conference proceedings 2023 Th

[復(fù)制鏈接]
樓主: 決絕
41#
發(fā)表于 2025-3-28 14:34:26 | 只看該作者
Energy and Environmental Scenario of Indiacted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
42#
發(fā)表于 2025-3-28 22:22:45 | 只看該作者
43#
發(fā)表于 2025-3-29 00:51:13 | 只看該作者
Fractional Operator Associated with the Fractal Integral of A-Fractal Functioncted by exploring the fractal integral of A-fractal function with predefined initial conditions. In addition, a fractional operator is presented, which takes each vector-valued continuous function to its fractal integral.
44#
發(fā)表于 2025-3-29 03:16:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:52 | 只看該作者
Conference proceedings 2023at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, sig
46#
發(fā)表于 2025-3-29 15:17:18 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:24 | 只看該作者
48#
發(fā)表于 2025-3-29 22:37:26 | 只看該作者
49#
發(fā)表于 2025-3-30 00:19:01 | 只看該作者
50#
發(fā)表于 2025-3-30 04:20:34 | 只看該作者
A Note on?Complex-Valued Fractal Functions on?the?Sierpiński Gasketvalued fractal operator defined on the Sierpiński gasket (. in short). We also calculate the bound for the perturbation error on .. Furthermore, we prove that the complex-valued fractal operator is bounded. In the last part, we establish the connection between the norm of the real-valued fractal operator and the complex-valued fractal operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 05:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 新兴县| 四会市| 承德市| 临西县| 吉水县| 台前县| 清流县| 盘锦市| 阿合奇县| 二手房| 西丰县| 昌黎县| 岚皋县| 长葛市| 万荣县| 佳木斯市| 民县| 巩留县| 潞西市| 吕梁市| 张家界市| 红桥区| 龙泉市| 永寿县| 凌源市| 宜春市| 民权县| 浦县| 新平| 霍山县| 荣昌县| 勐海县| 琼中| 临洮县| 宁蒗| 股票| 邢台市| 巍山| 雅安市| 桂阳县|