找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Analysis, Computation and Mathematical Modelling in Engineering; Select Proceedings o Santanu Saha Ray,H. Jafari,Suchandan Kayal Co

[復制鏈接]
樓主: 不要提吃飯
21#
發(fā)表于 2025-3-25 04:46:09 | 只看該作者
22#
發(fā)表于 2025-3-25 07:30:45 | 只看該作者
23#
發(fā)表于 2025-3-25 14:02:09 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:13 | 只看該作者
25#
發(fā)表于 2025-3-25 20:57:19 | 只看該作者
Energy and Environment Regulation differential equations. Prior to being these non-similarity equations are linearized by quasilinearization method and solved by the Chebyshev spectral collocation method. Several features emerging from these parameters, namely micropolar, viscous dissipation, Biot, and Soret numbers on physical quantities of the flow, are explored in detail.
26#
發(fā)表于 2025-3-26 03:57:38 | 只看該作者
Regulatory policies and energy prices exact solutions can be established. Moreover, solutions derived here contain some arbitrary constants and functions. These solutions are mainly multisoliton, single soliton, periodic or quasi-periodic and evolutionary wave types. Finally, with the adjustments in these arbitrary parameters and functions, some graphs have been plotted.
27#
發(fā)表于 2025-3-26 04:30:27 | 只看該作者
https://doi.org/10.1007/978-1-349-25057-8aluated through their sizes and powers using the Monte Carlo simulation procedure. It has been observed that the proposed tests compete with each other. Finally, two datasets have been considered for illustrating the testing procedures.
28#
發(fā)表于 2025-3-26 09:01:57 | 只看該作者
29#
發(fā)表于 2025-3-26 14:36:08 | 只看該作者
,Soliton Solutions of?Dual-mode Kawahara Equation via?Lie Symmetry Analysis,ions of the Kawahara equation. Initially, we reduce the governing equation into an ordinary differential equation by applying the Lie symmetry analysis. Further, we derive the soliton and periodic solutions via three integration methods, namely sech-csch scheme, exp-expansion method, and modified F-expansion method.
30#
發(fā)表于 2025-3-26 17:02:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
屏东县| 大竹县| 临高县| 新竹县| 繁峙县| 通州区| 咸宁市| 毕节市| 江孜县| 旬邑县| 永善县| 昌都县| 当雄县| 五峰| 陵川县| 保德县| 永靖县| 吉木乃县| 伊宁县| 遵义县| 东台市| 英山县| 墨江| 兴义市| 北宁市| 理塘县| 绩溪县| 宜川县| 乡城县| 霍山县| 浏阳市| 太湖县| 肇庆市| 桐柏县| 自贡市| 日喀则市| 峡江县| 九龙城区| 玉环县| 兴山县| 浪卡子县|