找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; 5th International Co Lloren? Huguet,Alain Poli Conference proceedings 198

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 12:48:28 | 只看該作者
12#
發(fā)表于 2025-3-23 17:41:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:23:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:31:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:01 | 只看該作者
Vahid Vahidinasab,Behnam Mohammadi-Ivatlooan extended algorithm. We show how all polynomials obtained by the classical extended Euclidean algorithm are actually automatically produced by that iterative process..In sum, an algorithm is given which is as economical as BERLEKAMP‘s for decoding and which is proved to perform decoding of alterna
16#
發(fā)表于 2025-3-24 08:40:48 | 只看該作者
Ali Paeizi,Mohammad Taghi Ameli,Sasan Azadichains of products of chains of size .,...,. — where . is a prime. We first explain this correspondance ; then we define as special antichains the weakly self-dual codes and the even codes over .(4) which are affine-invariant codes.
17#
發(fā)表于 2025-3-24 13:52:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:32:42 | 只看該作者
19#
發(fā)表于 2025-3-24 21:49:04 | 只看該作者
https://doi.org/10.1007/978-981-16-1256-5 For fixed t, μ. (t) is upperbounded by a real number c(t) independent of n. For t=1, one can take c(1)=1.5. We conjecture : .. μ.(1)=1. Another conjecture is : . K(n+2,t+1)≤K(n,t). We prove this for t=1 and discuss a possible way of proving it for higher t, by extensions of the concept of normality
20#
發(fā)表于 2025-3-25 01:17:08 | 只看該作者
https://doi.org/10.1007/978-3-642-48337-0Exhaustive search for minimally autocorrelated binary sequences has not met any conclusive answer yet. We present here a new algorithm which allows us to obtain in a reasonable time results for heretofore unreachable values.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
息烽县| 泰宁县| 万盛区| 涞源县| 双柏县| 健康| 酉阳| 辽中县| 林周县| 雅江县| 义马市| 东城区| 江华| 永胜县| 上栗县| 伊川县| 礼泉县| 固阳县| 万年县| 青岛市| 浦江县| 六盘水市| 霍山县| 类乌齐县| 砚山县| 古浪县| 庆云县| 定远县| 中牟县| 化隆| 华坪县| 绍兴市| 神木县| 秭归县| 龙里县| 桑日县| 临夏县| 香港 | 樟树市| 沁源县| 邻水|