找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes; 11th International S Gérard Cohen,Marc Giusti,Teo Mora Conference proceed

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:41:07 | 只看該作者
Chemical isomerism, a challenge for algebraic combinatorics and for computer science,ular structure elucidation, where a molecule has to be identified from experimental, usually from spectroscopic data. MOLGEN provides the full wealth of mathematically possible structures (multigraphs with given degree sequence, where the vertices are colored by atom names), from which further chemi
42#
發(fā)表于 2025-3-28 20:40:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:19:57 | 只看該作者
44#
發(fā)表于 2025-3-29 05:59:28 | 只看該作者
How lower and upper complexity bounds meet in elimination theory,
45#
發(fā)表于 2025-3-29 09:48:40 | 只看該作者
46#
發(fā)表于 2025-3-29 14:22:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:37:47 | 只看該作者
48#
發(fā)表于 2025-3-29 20:44:24 | 只看該作者
Algorithmic/Architectural Level Refinement,s equivalent to a certain double coset problem, no polynomial algorithm can be expected to work in the general case. But the reduction techniques used still allow to solve problems of an interesting size. As an example we explain how the 7-designs in the title were found. The two simple 7-designs wi
49#
發(fā)表于 2025-3-30 01:51:31 | 只看該作者
Analog Circuits and Signal Processingd by the algebraic-combinatoric “Bézout number” of the system which is given by the Hilbert function of a suitable homogeneous ideal. However, in many important cases, the value of the geometric degree is much smaller than the Bézout number since it does not take into account multiplicities or degre
50#
發(fā)表于 2025-3-30 07:46:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 恩平市| 井冈山市| 囊谦县| 惠安县| 兴业县| 城口县| 长垣县| 定陶县| 河西区| 德昌县| 武强县| 卢龙县| 江华| 靖远县| 嘉义县| 叙永县| 安福县| 墨竹工卡县| 南和县| 措美县| 龙山县| 恭城| 潜山县| 塔城市| 荔浦县| 开化县| 特克斯县| 安多县| 喀喇沁旗| 富民县| 托克托县| 岳阳市| 柏乡县| 梧州市| 清镇市| 甘德县| 龙里县| 万盛区| 宁强县| 鄯善县|