找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of the Theory of Groups in Mechanics and Physics; Petre P. Teodorescu,Nicolae-Alexandru P. Nicorovic Book 2004 Springer Scien

[復(fù)制鏈接]
查看: 11495|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:49:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applications of the Theory of Groups in Mechanics and Physics
影響因子2023Petre P. Teodorescu,Nicolae-Alexandru P. Nicorovic
視頻videohttp://file.papertrans.cn/160/159607/159607.mp4
學(xué)科分類Fundamental Theories of Physics
圖書封面Titlebook: Applications of the Theory of Groups in Mechanics and Physics;  Petre P. Teodorescu,Nicolae-Alexandru P. Nicorovic Book 2004 Springer Scien
影響因子The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a p
Pindex Book 2004
The information of publication is updating

書目名稱Applications of the Theory of Groups in Mechanics and Physics影響因子(影響力)




書目名稱Applications of the Theory of Groups in Mechanics and Physics影響因子(影響力)學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics網(wǎng)絡(luò)公開度




書目名稱Applications of the Theory of Groups in Mechanics and Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics被引頻次




書目名稱Applications of the Theory of Groups in Mechanics and Physics被引頻次學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics年度引用




書目名稱Applications of the Theory of Groups in Mechanics and Physics年度引用學(xué)科排名




書目名稱Applications of the Theory of Groups in Mechanics and Physics讀者反饋




書目名稱Applications of the Theory of Groups in Mechanics and Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:49:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:34 | 只看該作者
地板
發(fā)表于 2025-3-22 07:09:53 | 只看該作者
5#
發(fā)表于 2025-3-22 11:06:26 | 只看該作者
6#
發(fā)表于 2025-3-22 13:43:46 | 只看該作者
Applications of the Theory of Groups in Mechanics and Physics978-1-4020-2047-6Series ISSN 0168-1222 Series E-ISSN 2365-6425
7#
發(fā)表于 2025-3-22 19:46:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:40:10 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:42 | 只看該作者
10#
發(fā)表于 2025-3-23 08:23:48 | 只看該作者
978-90-481-6581-0Springer Science+Business Media New York 2004
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯门区| 肇源县| 淮北市| 海盐县| 铜梁县| 贵溪市| 中方县| 瑞丽市| 思南县| 重庆市| 商河县| 磐石市| 兴国县| 龙井市| 庆城县| 攀枝花市| 陕西省| 淮安市| 宽甸| 崇义县| 简阳市| 浮梁县| 镇巴县| 余江县| 连平县| 岚皋县| 漾濞| 霍林郭勒市| 镇安县| 阿合奇县| 黑河市| 潮安县| 潢川县| 白朗县| 临沧市| 泾源县| 无极县| 右玉县| 无极县| 孟连| 兴仁县|