找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of q-Calculus in Operator Theory; Ali Aral,Vijay Gupta,Ravi P Agarwal Book 2013 Springer Science+Business Media New York 2013

[復(fù)制鏈接]
樓主: MIFF
21#
發(fā)表于 2025-3-25 03:34:30 | 只看該作者
https://doi.org/10.1007/978-1-4614-6946-9Voronovskaya‘s theorem; generating functions; q-Bernstein polynomials; q-Durrmeyer operators; q-calculus
22#
發(fā)表于 2025-3-25 08:56:48 | 只看該作者
23#
發(fā)表于 2025-3-25 15:11:23 | 只看該作者
24#
發(fā)表于 2025-3-25 16:29:45 | 只看該作者
25#
發(fā)表于 2025-3-25 20:29:42 | 只看該作者
https://doi.org/10.1007/978-981-13-0523-8[58] considered a more general integral modification of the classical Bernstein polynomials, which were studied first by Derriennic [47]. Also some other generalizations of the Bernstein polynomials are available in the literature. The other most popular generalization as considered by Goodman and S
26#
發(fā)表于 2025-3-26 00:57:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:43:15 | 只看該作者
,-Discrete Operators and Their Results,omials, .-Szász–Mirakyan operators, .-Baskakov operators, and .-Bleimann, Butzer, and Hahn operators. Here, we present moment estimation, convergence behavior, and shape-preserving properties of these discrete operators.
28#
發(fā)表于 2025-3-26 09:36:33 | 只看該作者
,-Integral Operators,nastassiou and Gal [18] includes great number of results related to different properties of these type of operators and also includes other references on the subject. For example, in Chapter 16 of [18], Jackson-type generalization of these operators is one among other generalizations, which satisfy
29#
發(fā)表于 2025-3-26 16:17:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 余庆县| 峨边| 齐齐哈尔市| 陇西县| 文安县| 武山县| 邢台县| 怀仁县| 蛟河市| 诸暨市| 上饶市| 永顺县| 德阳市| 治县。| 永吉县| 炉霍县| 泰安市| 松阳县| 靖远县| 西青区| 金堂县| 石狮市| 定西市| 安图县| 张家川| 丹寨县| 图们市| 九寨沟县| 富阳市| 久治县| 潮州市| 北川| 灵宝市| 酒泉市| 伊金霍洛旗| 定日县| 鹿邑县| 和平县| 奉化市| 太谷县|