找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Nonlinear Analysis; Themistocles M. Rassias Book 2018 Springer International Publishing AG, part of Springer Nature 2018 N

[復(fù)制鏈接]
樓主: obsess
31#
發(fā)表于 2025-3-26 21:12:40 | 只看該作者
Treatment of Endometriosis of the Cul-de-Sacfor weighted discrete means, to H?lder inequality, Cauchy-Bunyakovsky-Schwarz inequality and for .-divergence measures in information theory are also given. Finally, applications for functions of selfadjoint operators in Hilbert spaces with some examples of interest are also provided.
32#
發(fā)表于 2025-3-27 03:23:37 | 只看該作者
Endometriosis and Ovarian Cancer, hat the idea to choose an arbitrary path between these two points and transforming it in order to get the geodesic line. He worked out this method for Lie groups, and in this paper the generalization to manifolds is given together with a convergence theorem that locally this method can be achieved in order to approximate geodesic lines.
33#
發(fā)表于 2025-3-27 07:08:42 | 只看該作者
I?aki González-Foruria,Pedro N. Barri Raguébrication problem is related to the analysis of the physical phenomena arising when a viscous lubricant is forced to flow between two surfaces in relative motion. A question of great importance is to describe how cavitation can take place and influence the pressure distribution in the lubricant between the two moving surfaces.
34#
發(fā)表于 2025-3-27 13:22:11 | 只看該作者
Camran Nezhat,Farr Nezhat,Ceana H. Nezhatd ..?=?1, where . is a positive integer greater or at least equal to two, in fuzzy Banach spaces..The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297–300.
35#
發(fā)表于 2025-3-27 17:11:11 | 只看該作者
New Applications of ,-Quasiconvexity,ctions have already been dealt with by S. Abramovich, L.-E. Persson and N. Samko. Among the applications we demonstrate here are Jensen, Hardy, H?lder, Minkowski, Jensen-Steffensen and Slater-Pe?ari? inequalities. These inequalities can be seen as extensions and refinements of inequalities satisfied by convex functions.
36#
發(fā)表于 2025-3-27 17:50:19 | 只看該作者
37#
發(fā)表于 2025-3-27 23:43:21 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:45:45 | 只看該作者
40#
發(fā)表于 2025-3-28 12:53:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通海县| 平泉县| 河东区| 墨竹工卡县| 建湖县| 图木舒克市| 兰州市| 通许县| 泸西县| 闵行区| 昭通市| 昌平区| 邻水| 蒙城县| 德兴市| 镇宁| 平湖市| 玛纳斯县| 达州市| 改则县| 确山县| 富宁县| 朝阳县| 青神县| 保亭| 乌拉特前旗| 合水县| 突泉县| 米易县| 南皮县| 东丰县| 蒲江县| 海阳市| SHOW| 依安县| 牡丹江市| 渝北区| 三台县| 谢通门县| 大渡口区| 喀喇沁旗|