找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Lie Groups to Differential Equations; Peter J. Olver Textbook 1993Latest edition Springer-Verlag New York, Inc. 1993 CON_D

[復制鏈接]
查看: 51654|回復: 40
樓主
發(fā)表于 2025-3-21 19:42:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applications of Lie Groups to Differential Equations
影響因子2023Peter J. Olver
視頻videohttp://file.papertrans.cn/160/159483/159483.mp4
學科分類Graduate Texts in Mathematics
圖書封面Titlebook: Applications of Lie Groups to Differential Equations;  Peter J. Olver Textbook 1993Latest edition Springer-Verlag New York, Inc. 1993 CON_D
影響因子Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Pindex Textbook 1993Latest edition
The information of publication is updating

書目名稱Applications of Lie Groups to Differential Equations影響因子(影響力)




書目名稱Applications of Lie Groups to Differential Equations影響因子(影響力)學科排名




書目名稱Applications of Lie Groups to Differential Equations網絡公開度




書目名稱Applications of Lie Groups to Differential Equations網絡公開度學科排名




書目名稱Applications of Lie Groups to Differential Equations被引頻次




書目名稱Applications of Lie Groups to Differential Equations被引頻次學科排名




書目名稱Applications of Lie Groups to Differential Equations年度引用




書目名稱Applications of Lie Groups to Differential Equations年度引用學科排名




書目名稱Applications of Lie Groups to Differential Equations讀者反饋




書目名稱Applications of Lie Groups to Differential Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:35:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:41:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:19:20 | 只看該作者
Die Begriffe ?Linie“ und ?Fl?che“s of conservation of energy, conservation of momentum and so on, plays an important role in the analysis of basic properties of the solutions. In 1918, Emmy Noether proved the remarkable result that for systems arising from a variational principle, every conservation law of the system comes from a c
5#
發(fā)表于 2025-3-22 10:05:12 | 只看該作者
6#
發(fā)表于 2025-3-22 16:42:43 | 只看該作者
Die Begriffe ?Linie“ und ?Fl?che“ing motion of rigid bodies, celestial mechanics, quantization theory and so on. More recently, Hamiltonian methods have become increasingly important in the study of the equations of continuum mechanics, including fluids, plasmas and elastic media. In this book, we are concerned with just one aspect
7#
發(fā)表于 2025-3-22 17:23:03 | 只看該作者
Nichtlineare DifferentialgleichungenConsequently, smooth solutions will satisfy the Euler-Lagrange equations for the relevant functional and one can employ the group-theoretic methods in the Lagrangian framework discussed in Chapters 4 and 5. However, when presented with the full dynamical problem, one encounters systems of evolution
8#
發(fā)表于 2025-3-22 21:29:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:33:09 | 只看該作者
978-0-387-95000-6Springer-Verlag New York, Inc. 1993
10#
發(fā)表于 2025-3-23 06:21:15 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 18:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永年县| 壤塘县| 大化| 古丈县| 光泽县| 同仁县| 昭通市| 通渭县| 务川| 南丹县| 周宁县| 宿州市| 五原县| 同德县| 青冈县| 彩票| 灵台县| 莒南县| 昌黎县| 榆中县| 泰州市| 吴忠市| 定南县| 两当县| 陈巴尔虎旗| 延庆县| 滨州市| 克东县| 象州县| 淳化县| 正镶白旗| 道孚县| 通渭县| 长子县| 汪清县| 宜城市| 乡城县| 且末县| 灵武市| 柏乡县| 四平市|