找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Geometric Algebra in Computer Science and Engineering; Leo Dorst,Chris Doran,Joan Lasenby Book 2002 Springer Science+Busin

[復制鏈接]
樓主: 動詞
41#
發(fā)表于 2025-3-28 17:46:15 | 只看該作者
A Toy Vector Field Based on Geometric Algebraon over C, which is the traditional approach for such work. Such “toy” vector fields are useful for instruction, understanding and topological simulation of many issues associated with all vector fields.
42#
發(fā)表于 2025-3-28 22:45:54 | 只看該作者
43#
發(fā)表于 2025-3-29 02:33:06 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:45 | 只看該作者
Compound Matrices and Pfaffians: A Representation of Geometric Algebracertain matrices which can be understood as the skew symmetric counterpart of the corresponding Gramians. Based on this representation we calculate the .th Clifford power . of a vector . ∈ .. which enables the extension of an analytical function . : . → . to their corresponding Clifford function .:.. → ..(.).
45#
發(fā)表于 2025-3-29 10:43:35 | 只看該作者
Jet Bundles and the Formal Theory of Partial Differential Equationsathematical underpinnings of involution (which lie in the theory of combinatorial decompositions of polynomial modules [.,.]) nor other applications of the theory of jet bundles such as the theory of symmetries of systems of PDEs [.] or discretisation schemes based on discrete approximations to jet bundles [.].
46#
發(fā)表于 2025-3-29 15:28:07 | 只看該作者
47#
發(fā)表于 2025-3-29 16:10:43 | 只看該作者
48#
發(fā)表于 2025-3-29 21:37:17 | 只看該作者
Anne L. C. Runehov,Lluis Oviedordinate control element (usually cubical or simplicial). The combinatorics of the starplex matches exactly the combinatorial structure of the multivector: every oriented k-cell in the starplex corresponds to some basis K-vector.
49#
發(fā)表于 2025-3-30 03:36:34 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:23 | 只看該作者
Encyclopedia of Sciences and Religionsmonstrated that the matrix basis of a Clifford number can be used to calculate the inverse of a Clifford number using the characteristic equation of the matrix and powers of the Clifford number. Examples are given for the algebras Clifford(2), Clifford(3) and Clifford(2,2).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石景山区| 商南县| 洛隆县| 班戈县| 白河县| 绥阳县| 应用必备| 罗源县| 察雅县| 筠连县| 都江堰市| 松桃| 玛纳斯县| 临泽县| 洛浦县| 沐川县| 望都县| 昂仁县| 云梦县| 文安县| 邹平县| 澄城县| 汉中市| 武乡县| 泰兴市| 华阴市| 霍邱县| 平南县| 卓资县| 贵溪市| 凤冈县| 沙湾县| 工布江达县| 凭祥市| 花莲县| 远安县| 永福县| 永善县| 小金县| 永善县| 阳新县|