找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 6 Proceedings Gerald E. Bergum,Andreas N. Philippou,Alwyn F. Hor Conference proceedings 1996 Kluw

[復制鏈接]
樓主: stripper
41#
發(fā)表于 2025-3-28 16:00:16 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:24 | 只看該作者
Conference proceedings 1996h was held at Washington State University, Pullman, Washington, from July 18-22, 1994. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relation
43#
發(fā)表于 2025-3-29 01:44:58 | 只看該作者
Reference work Oct 20081st editiond their relative location is unchanged. We say that a star . is a center covering star w.r.t. LCM if it covers its center in the above sense, and it is minimal if it does not contain any such center covering star with the same center which is a proper subset of ..
44#
發(fā)表于 2025-3-29 05:33:10 | 只看該作者
45#
發(fā)表于 2025-3-29 08:56:14 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:38 | 只看該作者
Matrices, Recurrent Sequences and Arithmetic,ated sequences, which was given in [6], the latter gives rise to two really surprising arithmetical applications, which are explained in the fourth paragraph. The results here obtained are all proved in an elementary way, notwithstanding their generality.
47#
發(fā)表于 2025-3-29 18:30:28 | 只看該作者
tions which was held at Washington State University, Pullman, Washington, from July 18-22, 1994. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrenc
48#
發(fā)表于 2025-3-29 21:53:28 | 只看該作者
49#
發(fā)表于 2025-3-30 03:49:04 | 只看該作者
https://doi.org/10.1007/978-3-540-29678-2er RaF(k,s) for Fibonacci sequences. For s = 3 the numbers RaF(k, 3) are known as Schur numbers [9]. A similar question for Rado numbers of second order linear recurrences was posed by S. Rabinowitz [12].
50#
發(fā)表于 2025-3-30 04:37:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
安阳市| 嵊州市| 海兴县| 永州市| 浙江省| 南华县| 革吉县| 延津县| 临洮县| 舟山市| 九寨沟县| 游戏| 临邑县| 布拖县| 水城县| 龙陵县| 教育| 崇州市| 阜康市| 南宫市| 东山县| 扶绥县| 神木县| 台东县| 汾西县| 定安县| 桂林市| 科尔| 元谋县| 三门县| 屏东市| 北海市| 防城港市| 泰宁县| 齐齐哈尔市| 黑水县| 聊城市| 榆中县| 明水县| 苗栗市| 揭阳市|