找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 2 A. N. Philippou,A. F. Horadam,G. E. Bergum Book 1988 Springer Science+Business Media B.V. 1988

[復(fù)制鏈接]
樓主: Extraneous
51#
發(fā)表于 2025-3-30 12:04:26 | 只看該作者
52#
發(fā)表于 2025-3-30 12:30:02 | 只看該作者
Adaptive Educational Hypermedia Systemsal elements in these sequences. Restrictions on n such that F. = 0 (mod d) can always be determined. However, for n ε{5, 8, 10, 12, 13, 15, 16, 17, 20} there does not exist an n-value such that L. = 0 (mod d).
53#
發(fā)表于 2025-3-30 18:14:09 | 只看該作者
Book 1988 Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
54#
發(fā)表于 2025-3-30 21:36:12 | 只看該作者
Fermat-Like Binomial Equations,resent this conjecture, which is also called ”Fermat’s Last Theorem”, is known to be true for all n ≤ 125 000 [1]. Moreover, the recent work of G. Faltings (see [1]) implies that, for each n ≥ 3, (1) has at most a finite number of solutions (x, y, z), with (x, y, z) = 1 and xyz ≠ 0.
55#
發(fā)表于 2025-3-31 00:55:13 | 只看該作者
Symmetric Recursive Sequences Mod M,e, one of the main targets for this study. Indeed, {log F.} is uniformly distributed mod 1, so that {F.} obeys Benford’s law, detailed study of which is carried out in [6]. In this note we are going to treat uniform distribution properties of certain recursive integer sequences in residue classes.
56#
發(fā)表于 2025-3-31 07:39:46 | 只看該作者
57#
發(fā)表于 2025-3-31 12:02:03 | 只看該作者
A Congruence Relation for a Linear Recursive Sequence of Arbitrary Order,ecomes the null sequence. In this case Theorems 1 and 2 below are trivial.) In (1) m ≥ 0 is a fixed integer. We referee to (1) as an (m+1)th order recurrence relation or an (m+1)th order difference equation. Thus {T.} is an integer sequence. The purpose of our present paper is to generalize results
58#
發(fā)表于 2025-3-31 16:01:18 | 只看該作者
Fibonacci Numbers and Groups,of it which are relevant to the present paper. In the remaining sections we discuss links, occurring in our work over a number of years, between this topic and the Fibonacci and Lucas sequences of numbers (f.) and (g.)
59#
發(fā)表于 2025-3-31 17:33:32 | 只看該作者
60#
發(fā)表于 2025-4-1 00:41:53 | 只看該作者
On the Representation of Integral Sequences {Fn/d} and {Ln/d} as Sums of Fibonacci Numbers and as S/1/, the purpose of this study is the development of relationships which enable prediction of the NUMBER of addends in these representations. Integral sequences {F./d} and {L./d} are considered such that d, with 2 is a predetermined integer and n is subject to appropriate conditions to assure integr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
冕宁县| 鄱阳县| 肇州县| 即墨市| 镇远县| 沽源县| 营山县| 左贡县| 东至县| 莎车县| 讷河市| 锦屏县| 富顺县| 玉门市| 巴林左旗| 台山市| 余江县| 大同县| 平南县| 什邡市| 土默特左旗| 股票| 泰安市| 宁国市| 黄山市| 江油市| 晋州市| 奉新县| 上犹县| 名山县| 蓬安县| 宕昌县| 德安县| 夹江县| 田阳县| 襄垣县| 固原市| 松桃| 永川市| 长岛县| 绍兴市|