找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 4 Proceedings G. E. Bergum,A. N. Philippou,A. F. Horadam Conference proceedings 1991 Springer Sci

[復(fù)制鏈接]
樓主: Pierce
51#
發(fā)表于 2025-3-30 11:25:25 | 只看該作者
52#
發(fā)表于 2025-3-30 15:53:17 | 只看該作者
53#
發(fā)表于 2025-3-30 19:33:43 | 只看該作者
54#
發(fā)表于 2025-3-30 21:23:14 | 只看該作者
Encyclopedia of Molecular PharmacologyLet a triangle in which the vertex angle is a positive integral multiple n of a base angle be called an α — nα triangle. We find integral solutions for the lengths of the sides by a recursive method. We note that, for any particular α for which there is an integral α — nα triangle, cos α must be a rational number by the law of cosines.
55#
發(fā)表于 2025-3-31 03:33:18 | 只看該作者
Markus Grube,Gabriele JedlitschkyGeneralizing the Fibonacci search we define the Fibonacci search of degree .. Like the Fibonacci search, which it reduces to for . = 2, the Fibonacci search of degree . involves only addition and subtraction.
56#
發(fā)表于 2025-3-31 08:04:36 | 只看該作者
Markus Grube,Gabriele JedlitschkyThe representation of Fibonacci and Lucas numbers in terms of hyperbolic functions [9, p. 7 ff.] and the idea of deriving Fibonacci identities from known hyperbolic identities are not new (e.g., see [6]).
57#
發(fā)表于 2025-3-31 11:54:29 | 只看該作者
https://doi.org/10.1007/978-3-030-57401-7Let us consider the Fibonacci polynomials ..(.) and the Lucas polynomials ... (or simply .. and V., if there is no danger of confusion) defined as.and.where . is an indeterminate. These polynomials are a natural extension of the numbers ..(m) and ..(.) considered in [1]. They have already been considered elsewhere (e.g., see [6]).
58#
發(fā)表于 2025-3-31 13:37:31 | 只看該作者
https://doi.org/10.1007/978-3-030-57401-7The purpose of this investigation is to exhibit some of the fundamental properties of., the .
59#
發(fā)表于 2025-3-31 20:04:58 | 只看該作者
On the Proof of GCD and LCM Equalities Concerning the Generalized Binomial and Multinomial CoefficiA strong divisibility sequence (or SDS) is a sequence of nonzero integers { a. } (n=1, 2, 3,…)that satisfies.for any positive integers m, n, where (a, b) stands for the greatest common divisor of a and b. This terminology was named by Kimberling [7], although this concept had been studied before by Ward [9] and others.
60#
發(fā)表于 2025-3-31 21:42:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍山县| 龙门县| 麻栗坡县| 泌阳县| 六盘水市| 湟中县| 濮阳市| 贡山| 揭西县| 五指山市| 宕昌县| 正镶白旗| 淅川县| 罗甸县| 盱眙县| 孝感市| 龙江县| 太仓市| 大石桥市| 云梦县| 双鸭山市| 五常市| 长顺县| 泰安市| 五家渠市| 株洲县| 龙泉市| 旺苍县| 黄陵县| 定边县| 花莲市| 南丹县| 轮台县| 沅江市| 天祝| 武陟县| 信阳市| 广西| 广东省| 鹤峰县| 库尔勒市|