找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Volume 4 Proceedings G. E. Bergum,A. N. Philippou,A. F. Horadam Conference proceedings 1991 Springer Sci

[復(fù)制鏈接]
樓主: Pierce
51#
發(fā)表于 2025-3-30 11:25:25 | 只看該作者
52#
發(fā)表于 2025-3-30 15:53:17 | 只看該作者
53#
發(fā)表于 2025-3-30 19:33:43 | 只看該作者
54#
發(fā)表于 2025-3-30 21:23:14 | 只看該作者
Encyclopedia of Molecular PharmacologyLet a triangle in which the vertex angle is a positive integral multiple n of a base angle be called an α — nα triangle. We find integral solutions for the lengths of the sides by a recursive method. We note that, for any particular α for which there is an integral α — nα triangle, cos α must be a rational number by the law of cosines.
55#
發(fā)表于 2025-3-31 03:33:18 | 只看該作者
Markus Grube,Gabriele JedlitschkyGeneralizing the Fibonacci search we define the Fibonacci search of degree .. Like the Fibonacci search, which it reduces to for . = 2, the Fibonacci search of degree . involves only addition and subtraction.
56#
發(fā)表于 2025-3-31 08:04:36 | 只看該作者
Markus Grube,Gabriele JedlitschkyThe representation of Fibonacci and Lucas numbers in terms of hyperbolic functions [9, p. 7 ff.] and the idea of deriving Fibonacci identities from known hyperbolic identities are not new (e.g., see [6]).
57#
發(fā)表于 2025-3-31 11:54:29 | 只看該作者
https://doi.org/10.1007/978-3-030-57401-7Let us consider the Fibonacci polynomials ..(.) and the Lucas polynomials ... (or simply .. and V., if there is no danger of confusion) defined as.and.where . is an indeterminate. These polynomials are a natural extension of the numbers ..(m) and ..(.) considered in [1]. They have already been considered elsewhere (e.g., see [6]).
58#
發(fā)表于 2025-3-31 13:37:31 | 只看該作者
https://doi.org/10.1007/978-3-030-57401-7The purpose of this investigation is to exhibit some of the fundamental properties of., the .
59#
發(fā)表于 2025-3-31 20:04:58 | 只看該作者
On the Proof of GCD and LCM Equalities Concerning the Generalized Binomial and Multinomial CoefficiA strong divisibility sequence (or SDS) is a sequence of nonzero integers { a. } (n=1, 2, 3,…)that satisfies.for any positive integers m, n, where (a, b) stands for the greatest common divisor of a and b. This terminology was named by Kimberling [7], although this concept had been studied before by Ward [9] and others.
60#
發(fā)表于 2025-3-31 21:42:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 方城县| 琼海市| 建宁县| 肥东县| 天长市| 松滋市| 丰都县| 利津县| 云和县| 通辽市| 麦盖提县| 东明县| 五台县| 天长市| 军事| 赫章县| 淮滨县| 克什克腾旗| 安图县| 汾阳市| 青冈县| 华坪县| 孟州市| 金塔县| 吉林市| 岑巩县| 新和县| 盘锦市| 甘南县| 花垣县| 宜君县| 和龙市| 抚远县| 怀仁县| 房产| 黄平县| 安乡县| 扬州市| 兴和县| 浪卡子县|