找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Fibonacci Numbers; Proceedings of ‘The Gerald E. Bergum,Andreas N. Philippou,Alwyn F. Hor Conference proceedings 1993 Kluw

[復(fù)制鏈接]
樓主: cessation
31#
發(fā)表于 2025-3-26 23:41:08 | 只看該作者
https://doi.org/10.1007/978-3-540-38918-7ently shown in [2], [4] and [5] that .(n) can be given explicitly as . where Ψ is the unique positive root of the polynomial equation .. + . ? 1 = 0, i.e., ., the reciprocal of the golden ratio. Here and in what follows, [.] denotes the greatest integer less than or equal to ..
32#
發(fā)表于 2025-3-27 03:40:17 | 只看該作者
Encyclopedia of Molecular Pharmacologyerred to an operational calculus for one-sided sequences, by using the Cauchy product instead of the Duhamel convolution, suitable for functional spaces (see e.g. [9], [7], [4]). As far as we know, till recently no attempts have been made however for using the Mikusinski approach for building operat
33#
發(fā)表于 2025-3-27 08:01:14 | 只看該作者
Encyclopedia of Molecular Pharmacologyight the role of enumeration in combinatorics. While the importance of knowing “how many” cannot be denied, there are many instances where the unique . of members of an enumeration can serve as codes to perform external control tasks or even adaptively influence the future course of the enumeration.
34#
發(fā)表于 2025-3-27 11:51:48 | 只看該作者
35#
發(fā)表于 2025-3-27 16:05:19 | 只看該作者
36#
發(fā)表于 2025-3-27 21:47:46 | 只看該作者
37#
發(fā)表于 2025-3-28 01:02:28 | 只看該作者
On a Class of Iterative Recurrence Relations,ently shown in [2], [4] and [5] that .(n) can be given explicitly as . where Ψ is the unique positive root of the polynomial equation .. + . ? 1 = 0, i.e., ., the reciprocal of the golden ratio. Here and in what follows, [.] denotes the greatest integer less than or equal to ..
38#
發(fā)表于 2025-3-28 02:52:45 | 只看該作者
Encyclopedia of Molecular Pharmacologyroducing sequences labeled ..). Such sequences of words have been considered by many mathematicians (see [1]–[12]) and are related to Fibonacci trees [10], Fibonacci word patterns ([11] and [12]), golden sequences [10], the sequence [.θ] ([1]), symmetric words [4] and the well-known rabbit problem [8].
39#
發(fā)表于 2025-3-28 08:03:53 | 只看該作者
A Kinase Anchoring Proteins (AKAPs)quares of the consecutive Fibonacci numbers. We were struck by the elegance of this formula—especially by its expressing the sum in factored form—and wondered whether anything similar could be done for sums of cubes of Fibonacci numbers. This paper is a report of some of our discoveries.
40#
發(fā)表于 2025-3-28 12:31:42 | 只看該作者
Encyclopedia of Molecular Pharmacologytinue to arise. See references [1] to [6]. The purpose of this article is twofold. We shall first present some additional interesting facts about triangles. Then we shall leave the reader with some unanswered questions. However, we will assume that all of the triangles used in this paper have integer sides.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 永昌县| 林周县| 芜湖县| 南充市| 勐海县| 清流县| 五指山市| 板桥市| 无为县| 崇文区| 宜良县| 石屏县| 南平市| 福建省| 光泽县| 太保市| 寿阳县| 阿克苏市| 沙雅县| 南溪县| 微山县| 砀山县| 中西区| 淅川县| 兴化市| 黔南| 福清市| 思茅市| 海伦市| 玛曲县| 宁陵县| 渭南市| 武冈市| 濮阳县| 图片| 建昌县| 方城县| 鄂州市| 股票| 东光县|