找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Data Mining in Computer Security; Daniel Barbará,Sushil Jajodia Book 2002 Springer Science+Business Media New York 2002 In

[復制鏈接]
樓主: CURD
31#
發(fā)表于 2025-3-27 00:15:37 | 只看該作者
https://doi.org/10.1007/978-3-662-66015-7ion or identification undertaken on a corpus of multi-author and multi-topic e-mail documents. We use an extended set of e-mail document features such as structural characteristics and linguistic patterns together with a Support Vector Machine as the learning algorithm. Experiments on a number of e-
32#
發(fā)表于 2025-3-27 04:03:12 | 只看該作者
https://doi.org/10.1007/978-1-4615-0953-0Information; Variable; architecture; data mining; genome; knowledge; security
33#
發(fā)表于 2025-3-27 09:13:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:35 | 只看該作者
Advances in Information Securityhttp://image.papertrans.cn/a/image/159359.jpg
35#
發(fā)表于 2025-3-27 14:58:06 | 只看該作者
Applications of Data Mining in Computer Security978-1-4615-0953-0Series ISSN 1568-2633 Series E-ISSN 2512-2193
36#
發(fā)表于 2025-3-27 18:32:01 | 只看該作者
Modern Intrusion Detection, Data Mining, and Degrees of Attack Guilt,llels two important aspects of intrusion detection: general detection strategy (misuse detection versus anomaly detection) and data source (individual hosts versus network traffic). Misuse detection attempts to match known patterns of intrusion, while anomaly detection searches for deviations from n
37#
發(fā)表于 2025-3-27 21:56:31 | 只看該作者
Data Mining for Intrusion Detection,nd network management. Over the past five years, a growing number of research projects have applied data mining to various problems in intrusion detection. This chapter surveys a representative cross section of these research efforts. Moreover, four characteristics of contemporary research are ident
38#
發(fā)表于 2025-3-28 05:02:41 | 只看該作者
An Architecture for Anomaly Detection,profile that contains a representation of the “normal” or expected traffic. The system flags anything that exceeds the normal activity (usually by means of thresholds) as an attack. Unfortunately, not everything that surpasses the expected activity is indeed an attack. Thus, anomaly detection system
39#
發(fā)表于 2025-3-28 07:12:55 | 只看該作者
40#
發(fā)表于 2025-3-28 11:23:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 12:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄂温| 兴安县| 醴陵市| 南江县| 伊宁市| 龙胜| 山阳县| 突泉县| 濮阳市| 剑阁县| 西充县| 宜城市| 佛山市| 九龙县| 泗水县| 晋江市| 綦江县| 宁海县| 吕梁市| 彰化县| 隆昌县| 通河县| 南开区| 建德市| 莎车县| 望江县| 牟定县| 九台市| 策勒县| 东乌珠穆沁旗| 通榆县| 武强县| 奉贤区| 通江县| 江口县| 潮安县| 江北区| 盐源县| 潢川县| 双峰县| 罗平县|