找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Computer Algebra; Kalamata, Greece, Ju Ilias S. Kotsireas,Edgar Martínez-Moro Conference proceedings 2017 Springer Internat

[復(fù)制鏈接]
樓主: Spouse
21#
發(fā)表于 2025-3-25 05:51:02 | 只看該作者
Jeanine Schreurs,Pim Martens,Gerjo Kokn closed-loop overconstrained mechanisms are concerned. Another way to define the mobility is to consider the dimension of the algebraic variety representing the closure of the loop. The approach described here, consists in computing the conditions that ensure that an overconstrained mechanism is mobile.
22#
發(fā)表于 2025-3-25 10:24:05 | 只看該作者
Dieter Fensel,Holger Lausen,John Domingue of Gr?bner bases and algorithmic ways for computing them. In this sense, minimal trial sets will be characterized as trial sets associated with minimal Gr?bner bases of the ideal associated to a code.
23#
發(fā)表于 2025-3-25 13:13:57 | 只看該作者
24#
發(fā)表于 2025-3-25 15:49:25 | 只看該作者
Dieter Fensel,Holger Lausen,John Domingueing methods arising from linear algebra, commutative algebra and symbolic computation. Concrete instances of covering arrays for given parameters will arise as points in a generated variety of a system of multivariate polynomial equations with Gr?bner Bases playing an important role.
25#
發(fā)表于 2025-3-25 20:43:43 | 只看該作者
26#
發(fā)表于 2025-3-26 01:12:04 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:44 | 只看該作者
28#
發(fā)表于 2025-3-26 08:39:40 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/a/image/159346.jpg
29#
發(fā)表于 2025-3-26 16:20:06 | 只看該作者
An Algebraic Method to Compute the Mobility of Closed-Loop Overconstrained Mechanisms,n closed-loop overconstrained mechanisms are concerned. Another way to define the mobility is to consider the dimension of the algebraic variety representing the closure of the loop. The approach described here, consists in computing the conditions that ensure that an overconstrained mechanism is mobile.
30#
發(fā)表于 2025-3-26 20:52:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
雅安市| 原平市| 遂溪县| 特克斯县| 五原县| 二连浩特市| 三台县| 纳雍县| 临夏县| 沛县| 辽中县| 白城市| 福海县| 乌恰县| 商南县| 泌阳县| 东莞市| 来宾市| 高雄县| 嘉祥县| 晋中市| 阳山县| 咸阳市| 莱西市| 聂荣县| 鄂托克旗| 米易县| 沁水县| 泽库县| 仪征市| 翁源县| 定日县| 克什克腾旗| 泰州市| 黄山市| 永福县| 晴隆县| 广元市| 卢氏县| 仁怀市| 河北省|