找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applications of Centre Manifold Theory; Jack Carr Book 1982 Springer-Verlag New York Inc. 1982 Calc.Calculation.Differentialgleichung.Fini

[復(fù)制鏈接]
查看: 9539|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:07:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Applications of Centre Manifold Theory
影響因子2023Jack Carr
視頻videohttp://file.papertrans.cn/160/159322/159322.mp4
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Applications of Centre Manifold Theory;  Jack Carr Book 1982 Springer-Verlag New York Inc. 1982 Calc.Calculation.Differentialgleichung.Fini
影響因子These notes are based on a series of lectures given in the Lefschetz Center for Dynamical Systems in the Division of Applied Mathematics at Brown University during the academic year 1978-79. The purpose of the lectures was to give an introduction to the applications of centre manifold theory to differential equations. Most of the material is presented in an informal fashion, by means of worked examples in the hope that this clarifies the use of centre manifold theory. The main application of centre manifold theory given in these notes is to dynamic bifurcation theory. Dynamic bifurcation theory is concerned with topological changes in the nature of the solutions of differential equations as para- meters are varied. Such an example is the creation of periodic orbits from an equilibrium point as a parameter crosses a critical value. In certain circumstances, the application of centre manifold theory reduces the dimension of the system under investigation. In this respect the centre manifold theory plays the same role for dynamic problems as the Liapunov-Schmitt procedure plays for the analysis of static solutions. Our use of centre manifold theory in bifurcation problems follows that
Pindex Book 1982
The information of publication is updating

書目名稱Applications of Centre Manifold Theory影響因子(影響力)




書目名稱Applications of Centre Manifold Theory影響因子(影響力)學(xué)科排名




書目名稱Applications of Centre Manifold Theory網(wǎng)絡(luò)公開度




書目名稱Applications of Centre Manifold Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applications of Centre Manifold Theory被引頻次




書目名稱Applications of Centre Manifold Theory被引頻次學(xué)科排名




書目名稱Applications of Centre Manifold Theory年度引用




書目名稱Applications of Centre Manifold Theory年度引用學(xué)科排名




書目名稱Applications of Centre Manifold Theory讀者反饋




書目名稱Applications of Centre Manifold Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:26:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:33:44 | 只看該作者
https://doi.org/10.1007/978-1-4612-5929-9Calc; Calculation; Differentialgleichung; Finite; Mannigfaltigkeit; Verzweigung; applied mathematics; diffe
地板
發(fā)表于 2025-3-22 06:02:01 | 只看該作者
978-0-387-90577-8Springer-Verlag New York Inc. 1982
5#
發(fā)表于 2025-3-22 10:52:47 | 只看該作者
Michael J. Murray,Mathew ForstaterIn this chapter we state the main results of centre manifold theory for finite dimensional systems and give some simple examples to illustrate their application.
6#
發(fā)表于 2025-3-22 13:27:08 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:26:00 | 只看該作者
9#
發(fā)表于 2025-3-23 01:38:04 | 只看該作者
Introduction to Centre Manifold Theory,In this chapter we state the main results of centre manifold theory for finite dimensional systems and give some simple examples to illustrate their application.
10#
發(fā)表于 2025-3-23 09:06:51 | 只看該作者
Examples,In this section we study the decay to zero of solutions of the equation . where f is a smooth function with . where a is a constant. By using a suitable Liapunov function it is easy to show that the zero solution of (3.1.1) is asymptotically stable. However, because f′(0) = 0, the rate of decay cannot be determined by linearization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲市| 双桥区| 澜沧| 九台市| 咸宁市| 北京市| 泉州市| 阜城县| 石台县| 余干县| 伊宁县| 台东县| 石泉县| 万全县| 土默特左旗| 沈阳市| 姜堰市| 灌南县| 前郭尔| 屏东市| 会同县| 通城县| 科技| 柯坪县| 高陵县| 陕西省| 界首市| 偏关县| 五峰| 汝南县| 格尔木市| 井冈山市| 石渠县| 珲春市| 清水县| 齐齐哈尔市| 白玉县| 普定县| 金平| 乐至县| 乐亭县|