找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Application of Integrable Systems to Phase Transitions; C.B. Wang Book 2013 Springer-Verlag Berlin Heidelberg 2013 Integrable system.Large

[復(fù)制鏈接]
樓主: 貪吃的人
11#
發(fā)表于 2025-3-23 13:08:56 | 只看該作者
Introduction,he hypergeometric-type differential equations improve on some shortages of integrable systems to work on physical problems, such as the fact that a soliton system does not have a differential equation along the spectrum direction, and illustrate a new background to study the singularities of physica
12#
發(fā)表于 2025-3-23 15:07:52 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:34 | 只看該作者
Bifurcation Transitions and Expansions,rom the string equations. The density on multiple disjoint intervals for higher degree potential and the corresponding free energy are discussed in association with the Seiberg-Witten differential. In the symmetric cases for the quartic potential, the third-order phase transitions are explained with
14#
發(fā)表于 2025-3-23 23:14:05 | 只看該作者
15#
發(fā)表于 2025-3-24 06:12:19 | 只看該作者
Densities in Unitary Matrix Models, the orthogonal polynomials on the unit circle. The integrable systems and string equation discussed in this chapter provide a structure for finding the generalized density models and parameter relations that will be used as the mathematical foundation to investigate the transition problems discusse
16#
發(fā)表于 2025-3-24 07:51:03 | 只看該作者
17#
發(fā)表于 2025-3-24 12:37:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:05 | 只看該作者
theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory..978-3-642-44024-3978-3-642-38565-0
19#
發(fā)表于 2025-3-24 23:04:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垦利县| 敦化市| 吴江市| 汝州市| 南投市| 五大连池市| 宁化县| 岗巴县| 象州县| 南宫市| 闽侯县| 内黄县| 临高县| 紫金县| 年辖:市辖区| 富裕县| 昆山市| 定边县| 通城县| 登封市| 闻喜县| 湟源县| 原阳县| 青铜峡市| 赫章县| 沭阳县| 叶城县| 和平县| 静安区| 澄江县| 富阳市| 鹤峰县| 喜德县| 镇坪县| 军事| 海宁市| 阳新县| 措美县| 文化| 铁力市| 邳州市|