找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Anti-Differentiation and the Calculation of Feynman Amplitudes; Johannes Blümlein,Carsten Schneider Book 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Deflated
31#
發(fā)表于 2025-3-26 22:01:13 | 只看該作者
Integration-by-Parts: A Survey,We present an overview of the field of Integration-By-Parts with special emphasis on Laporta’s algorithm. We give an overview of the problems associated with Laporta’s algorithm and try to illustrate possible ways out.
32#
發(fā)表于 2025-3-27 01:40:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:47:12 | 只看該作者
34#
發(fā)表于 2025-3-27 11:35:05 | 只看該作者
,N =? 4 SYM Gauge Theories: The 2?→?6 Amplitude in the Regge Limit,ty and energy discontinuities, and the analytic structure plays a vital role. We first summarize the lessons learned from the study of the remainder functions of the 2?→?4 and the 2?→?5 scattering amplitudes and then present new results for the 2?→?6 amplitude.
35#
發(fā)表于 2025-3-27 13:53:27 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:21 | 只看該作者
37#
發(fā)表于 2025-3-28 00:08:02 | 只看該作者
Calculating Four-Loop Corrections in QCD,rs, with specific focus on deep-inelastic scattering and electron-positron annihilation. The calculations build on the parametric reduction of loop and phase space integrals up to four-loop order using computer algebra programs such as ., designed for large scale computations.
38#
發(fā)表于 2025-3-28 03:21:38 | 只看該作者
Expansion by Regions: An Overview,en limit where some kinematic invariants and/or masses have certain scaling measured in powers of a given small parameter. Prescriptions of this strategy are formulated in a simple geometrical language and are illustrated through simple examples.
39#
發(fā)表于 2025-3-28 06:31:56 | 只看該作者
https://doi.org/10.1007/978-3-030-80219-6elliptic integrals and functions; iterated modular functions; iterated integrals; massive high loop Fey
40#
發(fā)表于 2025-3-28 10:41:32 | 只看該作者
978-3-030-80221-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 怀柔区| 罗田县| 措勤县| 嵊泗县| 武川县| 察隅县| 来宾市| 凉山| 佛冈县| 淳化县| 灵武市| 赤壁市| 什邡市| 桐梓县| 景洪市| 绥江县| 潼南县| 渑池县| 莆田市| 三江| 蒲城县| 呼玛县| 安龙县| 哈尔滨市| 平安县| 阳信县| 额敏县| 竹溪县| 宝坻区| 札达县| 宣化县| 社旗县| 白水县| 乌兰县| 大安市| 耒阳市| 临夏市| 塔城市| 西城区| 运城市|