找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Anomaly-Detection and Health-Analysis Techniques for Core Router Systems; Shi Jin,Zhaobo Zhang,Xinli Gu Book 2020 Springer Nature Switzerl

[復(fù)制鏈接]
查看: 29011|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:27:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems
影響因子2023Shi Jin,Zhaobo Zhang,Xinli Gu
視頻videohttp://file.papertrans.cn/159/158035/158035.mp4
發(fā)行地址Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis.Presents the design of a changepoint-based anomaly detector.Includes Hierarchical Symbol-based Health-Status Analysis.De
圖書封面Titlebook: Anomaly-Detection and Health-Analysis Techniques for Core Router Systems;  Shi Jin,Zhaobo Zhang,Xinli Gu Book 2020 Springer Nature Switzerl
影響因子This book tackles important problems of anomaly detection and health status analysis in complex core router systems, integral to today’s Internet Protocol (IP) networks. The techniques described provide the first comprehensive set of data-driven resiliency solutions for core router systems. The authors present an anomaly detector for core router systems using correlation-based time series analysis, which monitors a set of features of a complex core router system. They also describe the design of a changepoint-based anomaly detector such that anomaly detection can be adaptive to changes in the statistical features of data streams. The presentation also includes a symbol-based health status analyzer that first encodes, as a symbol sequence, the long-term complex time series collected from a number of core routers, and then utilizes the symbol sequence for health analysis. Finally, the authors describe an iterative, self-learning procedure for assessing the health status..Enables Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;.Presents the design of a changepoint-based anomaly detector;.Includes Hierarchical Symbol-based Health-Status Analysis;.Describes an it
Pindex Book 2020
The information of publication is updating

書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems影響因子(影響力)




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems影響因子(影響力)學(xué)科排名




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems網(wǎng)絡(luò)公開(kāi)度




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems被引頻次




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems被引頻次學(xué)科排名




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems年度引用




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems年度引用學(xué)科排名




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems讀者反饋




書目名稱Anomaly-Detection and Health-Analysis Techniques for Core Router Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:09 | 只看該作者
https://doi.org/10.1007/BFb0046097 time series in a hierarchical way. Hierarchical agglomerative clustering and sequitur rule discovery are implemented to learn important global and local patterns. Three classification methods including a vector-space-model-based approach are then utilized to identify the health status of core route
板凳
發(fā)表于 2025-3-22 02:08:32 | 只看該作者
https://doi.org/10.1007/BFb0046097y-connected feedforward autoencoder are applied to further reduce dimensionality of extracted feature matrix. Hierarchical clustering is then utilized to infer labels for the unlabeled dataset. Finally, a classifier is built and iteratively updated using both labeled and unlabeled dataset. Field dat
地板
發(fā)表于 2025-3-22 06:32:07 | 只看該作者
s Accurate Anomaly Detection Using Correlation-Based Time-Series Analysis;.Presents the design of a changepoint-based anomaly detector;.Includes Hierarchical Symbol-based Health-Status Analysis;.Describes an it978-3-030-33666-0978-3-030-33664-6
5#
發(fā)表于 2025-3-22 11:34:21 | 只看該作者
6#
發(fā)表于 2025-3-22 14:01:10 | 只看該作者
7#
發(fā)表于 2025-3-22 19:22:11 | 只看該作者
Anomaly-Detection and Health-Analysis Techniques for Core Router Systems978-3-030-33664-6
8#
發(fā)表于 2025-3-23 01:05:14 | 只看該作者
Changepoint-Based Anomaly Detection,idate the proposed anomaly detector. Experimental results show that our changepoint-based anomaly detector achieves better performance than traditional methods in terms of two metrics, namely success ratio and non-false-alarm ratio.
9#
發(fā)表于 2025-3-23 04:25:28 | 只看該作者
Hierarchical Symbol-Based Health-Status Analysis, time series in a hierarchical way. Hierarchical agglomerative clustering and sequitur rule discovery are implemented to learn important global and local patterns. Three classification methods including a vector-space-model-based approach are then utilized to identify the health status of core route
10#
發(fā)表于 2025-3-23 09:10:26 | 只看該作者
Self-learning and Efficient Health-Status Analysis,y-connected feedforward autoencoder are applied to further reduce dimensionality of extracted feature matrix. Hierarchical clustering is then utilized to infer labels for the unlabeled dataset. Finally, a classifier is built and iteratively updated using both labeled and unlabeled dataset. Field dat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 上犹县| 合作市| 鹤山市| 临漳县| 富锦市| 扬中市| 湘潭市| 马尔康县| 镇沅| 文化| 施甸县| 云龙县| 温泉县| 库尔勒市| 安福县| 鸡西市| 宜川县| 辰溪县| 会同县| 手机| 田林县| 临江市| 浪卡子县| 页游| 彭山县| 林甸县| 宁乡县| 峨边| 苍梧县| 邢台市| 芜湖市| 镇远县| 富蕴县| 南丰县| 大丰市| 远安县| 庆安县| 肇州县| 翼城县| 梨树县|