找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analyzing Medical Data Using S-PLUS; Brian Everitt,Sophia Rabe-Hesketh Book 2001 Springer Science+Business Media New York 2001 Analysis of

[復(fù)制鏈接]
查看: 6125|回復(fù): 64
樓主
發(fā)表于 2025-3-21 17:22:18 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analyzing Medical Data Using S-PLUS
影響因子2023Brian Everitt,Sophia Rabe-Hesketh
視頻videohttp://file.papertrans.cn/157/156826/156826.mp4
發(fā)行地址Written specifically for the medical field.Uses S-PLUS to apply a variety of statistical methods.Contains a mix of real data examples and background theory
學(xué)科分類Statistics for Biology and Health
圖書封面Titlebook: Analyzing Medical Data Using S-PLUS;  Brian Everitt,Sophia Rabe-Hesketh Book 2001 Springer Science+Business Media New York 2001 Analysis of
影響因子Each chapter will consist of basic statistical theory, simple examples of S-PLUS code, more complex examples of S-PLUS code, and exercises. All data sets will be taken from genuine medical investigations and will be made available, if possible, on a web site. All examples will contain extensive graphical analysis to highlight one of the prime features of S-PLUS. The book would complement Venables and Ripley (VR). However, there is far less about the details of S-PLUS and probably less technical descriptions of techniques. The book concentrates solely on medical data sets trying to demonstrate the flexibility of S-PLUS and its huge advantages, particularly for applied medical statisticians.
Pindex Book 2001
The information of publication is updating

書目名稱Analyzing Medical Data Using S-PLUS影響因子(影響力)




書目名稱Analyzing Medical Data Using S-PLUS影響因子(影響力)學(xué)科排名




書目名稱Analyzing Medical Data Using S-PLUS網(wǎng)絡(luò)公開(kāi)度




書目名稱Analyzing Medical Data Using S-PLUS網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Analyzing Medical Data Using S-PLUS被引頻次




書目名稱Analyzing Medical Data Using S-PLUS被引頻次學(xué)科排名




書目名稱Analyzing Medical Data Using S-PLUS年度引用




書目名稱Analyzing Medical Data Using S-PLUS年度引用學(xué)科排名




書目名稱Analyzing Medical Data Using S-PLUS讀者反饋




書目名稱Analyzing Medical Data Using S-PLUS讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:50 | 只看該作者
Theoretische Ans?tze zur Dividendenpolitike data in some way. Which graphs and which summary statistics are most appropriate will largely depend on the type of observations and measurements that have been recorded. In this chapter, we shall illustrate the possibilities using a number of data sets containing continuous or categorical variables.
板凳
發(fā)表于 2025-3-22 01:24:06 | 只看該作者
Grundlagen der Dividendenpolitikpopulation—is central to statistics in general, and medical statistics in particular. In this chapter, we shall look at some basic inferential methods, beginning with those most suitable for continuous variables having, approximately at least, a normal distribution.
地板
發(fā)表于 2025-3-22 06:42:49 | 只看該作者
5#
發(fā)表于 2025-3-22 10:37:35 | 只看該作者
https://doi.org/10.1057/9780230118737ss modeling survival using several explanatory variables simultaneously analogously to linear regression or generalized linear models. The most popular, and in many cases most useful, regression model for survival data in medicine is Cox’s regression model.
6#
發(fā)表于 2025-3-22 15:26:47 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:19 | 只看該作者
8#
發(fā)表于 2025-3-22 23:41:02 | 只看該作者
Divine Free Action in Avicenna and AnselmAll of the models discussed so far assume that the dependent variable is continuous and normally distributed. In this chapter, we introduce ., which include the regression and ANOVA models of previous chapters, but can also be used for modeling non-normally distributed response variables, in particular categorical variables.
9#
發(fā)表于 2025-3-23 05:25:23 | 只看該作者
10#
發(fā)表于 2025-3-23 07:15:18 | 只看該作者
Generalized Linear Models I: Logistic Regression,All of the models discussed so far assume that the dependent variable is continuous and normally distributed. In this chapter, we introduce ., which include the regression and ANOVA models of previous chapters, but can also be used for modeling non-normally distributed response variables, in particular categorical variables.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳谷县| 塔河县| 赣州市| 巩留县| 龙胜| 连江县| 财经| 高安市| 景洪市| 陵川县| 全州县| 永善县| 伊吾县| 文成县| 荣成市| 连州市| 色达县| 湖南省| 河源市| 绥江县| 韶关市| 临邑县| 杭锦后旗| 商丘市| 社旗县| 额尔古纳市| 柳江县| 德清县| 皋兰县| 通海县| 丰县| 娄烦县| 广安市| 县级市| 远安县| 嘉兴市| 曲松县| 景德镇市| 左贡县| 泽州县| 竹溪县|