找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytical and Numerical Approaches to Mathematical Relativity; J?rg Frauendiener,Domenico J.W. Giulini,Volker Per Book 2006 Springer-Verl

[復(fù)制鏈接]
樓主: Conjecture
41#
發(fā)表于 2025-3-28 15:33:42 | 只看該作者
Cesar A. Guerrero,William H. Belletric on . and . : .×? → ? a function), which generalize classical plane waves, are revisited. Our study covers causality (causal ladder, non-existence of horizons), geodesic completeness, geodesic connectedness and existence of conjugate points. Appropriate mathematical tools for each problem are e
42#
發(fā)表于 2025-3-28 21:27:06 | 只看該作者
https://doi.org/10.1007/978-1-4612-2140-1of symmetric hyperbolicity of first-order systems and that of regular hyperbolicity of second-order systems. Numerous examples are provided, mainly taken from nonrelativistic and relativistic continuum mechanics.
43#
發(fā)表于 2025-3-29 00:31:49 | 只看該作者
44#
發(fā)表于 2025-3-29 05:55:15 | 只看該作者
Fernando Molina,Alvaro A. Figueroam general relativity of Beig and ó Murchadha. It is shown that the algebra of asymptotic Killing symmetries, defined with respect to a given foliation of the spacetime, depends on the fall-off. rate of the metric. It is only the Lorentz Lie algebra for slow fall-off, but it is the Poincaré algebra f
45#
發(fā)表于 2025-3-29 10:43:05 | 只看該作者
Christoph Bauer,Jens-Eric von Düsterlhotations of these equations. We illustrate this in two examples, the numerical evolution of “bubble” and single black hole space-times. The former is chosen to demonstrate how accurate numerical solutions can answer open questions and even reveal unexpected phenomena. The latter illustrates some of t
46#
發(fā)表于 2025-3-29 11:47:29 | 只看該作者
47#
發(fā)表于 2025-3-29 16:33:35 | 只看該作者
10樓
48#
發(fā)表于 2025-3-29 20:08:40 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 00:00:48 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
十堰市| 长宁区| 宜春市| 江阴市| 瓦房店市| 阜平县| 萝北县| 宜章县| 崇文区| 泗水县| 浏阳市| 宝坻区| 集贤县| 古田县| 南召县| 新密市| 青岛市| 涿鹿县| 沙河市| 耿马| 灯塔市| 台湾省| 上林县| 汪清县| 岫岩| 兴仁县| 武汉市| 濮阳市| 绵阳市| 安远县| 香河县| 陇川县| 响水县| 秀山| 沾化县| 波密县| 文登市| 德兴市| 龙门县| 湟源县| 阿瓦提县|