找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytical Mechanics; Classical, Lagrangia Valter Moretti Textbook 20231st edition The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
查看: 43369|回復(fù): 57
樓主
發(fā)表于 2025-3-21 19:01:04 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Analytical Mechanics
期刊簡稱Classical, Lagrangia
影響因子2023Valter Moretti
視頻videohttp://file.papertrans.cn/157/156611/156611.mp4
發(fā)行地址Textbook is flexible and adapts to different curricula.Contains both physical motivations and abstract formalism.Classical analytical mechanics is viewed from the perspective of modern physics
學(xué)科分類UNITEXT
圖書封面Titlebook: Analytical Mechanics; Classical, Lagrangia Valter Moretti Textbook 20231st edition The Editor(s) (if applicable) and The Author(s), under e
影響因子.This textbook aims at introducing readers, primarily students?enrolled in undergraduate Mathematics or Physics courses, to the?topics and methods of classical Mathematical Physics, including Classical Mechanics, its?Lagrangian and Hamiltonian formulations, Lyapunov?stability, plus the Liouville theorem and?the Poincaré recurrence theorem among others. The material also rigorously covers the theory of Special Relativity. The logical-mathematical structure of the physical theories of concern is?introduced in an axiomatic way, starting from a limited?number of physical assumptions. Special attention is paid to?themes with a major impact on Theoretical and Mathematical?Physics beyond Analytical Mechanics, such as the Galilean symmetry of classical Dynamics and the Poincaré symmetry of?relativistic Dynamics, the far-fetching relationship between symmetries?and constants of motion, the coordinate-free nature of the underpinning mathematical objects, or the possibility of?describing Dynamics in a global way while still working in local?coordinates. Based on the author’s established teaching experience, the text was conceived to be?flexible and thus adapt to different curricula and to the
Pindex Textbook 20231st edition
The information of publication is updating

書目名稱Analytical Mechanics影響因子(影響力)




書目名稱Analytical Mechanics影響因子(影響力)學(xué)科排名




書目名稱Analytical Mechanics網(wǎng)絡(luò)公開度




書目名稱Analytical Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytical Mechanics被引頻次




書目名稱Analytical Mechanics被引頻次學(xué)科排名




書目名稱Analytical Mechanics年度引用




書目名稱Analytical Mechanics年度引用學(xué)科排名




書目名稱Analytical Mechanics讀者反饋




書目名稱Analytical Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:41 | 只看該作者
978-3-031-27611-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
板凳
發(fā)表于 2025-3-22 02:46:31 | 只看該作者
https://doi.org/10.1007/978-3-540-46664-2In this chapter we introduce the structure of . of Classical Physics, the notion of . and the fundamental ideas of elementary, absolute and relative ..
地板
發(fā)表于 2025-3-22 05:26:10 | 只看該作者
https://doi.org/10.1007/978-3-540-46664-2In this chapter we introduce the basics in the theory of Lyapunov stability, which was first formulated at the end of the nineteenth century.
5#
發(fā)表于 2025-3-22 08:48:54 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:01 | 只看該作者
7#
發(fā)表于 2025-3-22 19:46:28 | 只看該作者
Thomas Schickinger,Angelika StegerThe final chapter is devoted to formulating Hamiltonian Mechanics on symplectic manifolds and on bundles over symplectic manifolds. We will take the chance to discuss in detail the phase-space action of the Galilean and Poincaré groups in terms of canonical transformations.
8#
發(fā)表于 2025-3-22 23:14:46 | 只看該作者
https://doi.org/10.1007/978-3-662-45177-9In this chapter we introduce the elementary theory of . in terms of ., also on differentiable manifolds.
9#
發(fā)表于 2025-3-23 03:13:04 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 马公市| 沽源县| 盐边县| 丁青县| 长沙市| 中西区| 巴南区| 大安市| 濮阳县| 车险| 高淳县| 高安市| 仪征市| 翁源县| 宾川县| 文登市| 望城县| 安塞县| 田阳县| 会昌县| 绍兴县| 青岛市| 石台县| 朝阳市| 大新县| 宝应县| 延庆县| 大关县| 建瓯市| 绥化市| 江山市| 镇远县| 荆州市| 黑山县| 大姚县| 平阴县| 北海市| 万全县| 云梦县| 武隆县|