找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Partial Differential Equations; Fran?ois Treves Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive licens

[復(fù)制鏈接]
樓主: DART
11#
發(fā)表于 2025-3-23 11:17:13 | 只看該作者
12#
發(fā)表于 2025-3-23 16:21:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:30:25 | 只看該作者
Examples of Two-Dimensional Systems,rtant aspect of how we define distributions, often called . after the pioneering text [De Rham, 1955], on a . manifold is the distinction made necessary by the orientation, or lack thereof, of the manifold.
14#
發(fā)表于 2025-3-23 23:43:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:45:53 | 只看該作者
Development of DQEM Irregular Elements, The purpose of this chapter is to present the Lojasiewicz proof that analytic varieties admit . partitions made of (embedded) analytic submanifolds with special properties of adherences (including the so-called .).
16#
發(fā)表于 2025-3-24 08:36:21 | 只看該作者
17#
發(fā)表于 2025-3-24 11:36:10 | 只看該作者
Distributions and Hyperfunctions on a Manifoldrtant aspect of how we define distributions, often called . after the pioneering text [De Rham, 1955], on a . manifold is the distinction made necessary by the orientation, or lack thereof, of the manifold.
18#
發(fā)表于 2025-3-24 17:43:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:27:53 | 只看該作者
Polyhedral Surfaces of High GenusThis chapter is devoted to introducing the most basic notation, terminology and definitions related to the function classes constantly used in the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜平县| 河北区| 屏边| 榕江县| 公安县| 荥阳市| 东丰县| 辽阳市| 平遥县| 南木林县| 宜昌市| 科尔| 武冈市| 西乌| 西充县| 新泰市| 定边县| 浮梁县| 彭泽县| 麻城市| 留坝县| 栾川县| 柘城县| 北京市| 西吉县| 新余市| 新津县| 邢台县| 兴山县| 新乡市| 长沙市| 许昌市| 淳化县| 称多县| 朔州市| 五常市| 荣成市| 启东市| 许昌市| 营口市| 武安市|