找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory, Modular Forms and q-Hypergeometric Series; In Honor of Krishna George E. Andrews,Frank Garvan Conference proceedin

[復(fù)制鏈接]
樓主: VER
31#
發(fā)表于 2025-3-26 22:21:52 | 只看該作者
32#
發(fā)表于 2025-3-27 01:13:41 | 只看該作者
Solving Combinatorial Optimization ProblemsThis paper discusses the additive prime divisor function . which was introduced by Alladi and Erd?s in 1977. It is shown that .(.) is uniformly distributed (mod .) for any fixed integer . with an explicit bound for the error.
33#
發(fā)表于 2025-3-27 05:41:45 | 只看該作者
Curves of Finite Total CurvatureRamanujan’s tau function is defined by .where .. It is known that if . is prime, .where it is understood that . if . does not divide .. We give proofs of this relation for . and 13. which rely on nothing more than Jacobi’s triple product identity. I believe that the case . is intrinsically more difficult, and I do not attempt it here.
34#
發(fā)表于 2025-3-27 13:12:25 | 只看該作者
35#
發(fā)表于 2025-3-27 15:40:08 | 只看該作者
Adventures with the OEIS,This paper is a somewhat expanded companion to a talk (Available at .) with the same title presented in December 2015 at a 2015 workshop celebrating Tony Guttmann’s seventieth birthday. My main intention is to further advertise the wonderful resource that the Online Encyclopedia of Integer Sequences (OEIS) has become.
36#
發(fā)表于 2025-3-27 21:38:47 | 只看該作者
37#
發(fā)表于 2025-3-27 22:00:31 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:22 | 只看該作者
39#
發(fā)表于 2025-3-28 08:10:30 | 只看該作者
,Ramanujan’s Tau Function,Ramanujan’s tau function is defined by .where .. It is known that if . is prime, .where it is understood that . if . does not divide .. We give proofs of this relation for . and 13. which rely on nothing more than Jacobi’s triple product identity. I believe that the case . is intrinsically more difficult, and I do not attempt it here.
40#
發(fā)表于 2025-3-28 11:17:49 | 只看該作者
Analytic Number Theory, Modular Forms and q-Hypergeometric Series978-3-319-68376-8Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞水县| 云龙县| 汝州市| 巴林右旗| 阿瓦提县| 杨浦区| 抚远县| 鹤岗市| 普陀区| 墨竹工卡县| 西充县| 富宁县| 南川市| 乐平市| 南宫市| 琼海市| 扎鲁特旗| 德阳市| 南陵县| 思茅市| 阿荣旗| 铜鼓县| 伊吾县| 宁安市| 江西省| 乐安县| 将乐县| 德江县| 乌兰县| 台东县| 囊谦县| 内江市| 新龙县| 罗田县| 丹棱县| 昌邑市| 天长市| 时尚| 水城县| 许昌市| 搜索|