找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory; Chaohua Jia,Kohji Matsumoto Book 2002 Springer Science+Business Media Dordrecht 2002 Arithmetic.Diophantine approx

[復(fù)制鏈接]
樓主: 精明
21#
發(fā)表于 2025-3-25 04:49:48 | 只看該作者
Pierpaolo Basile,Barbara McGillivraycongruence. As applications, we mention some generalizations of Morley’s congruence and Jacobstahl’s Theorem to modulo arbitary positive integers. The details of the proof will partly appear in Acta Arithmetica.
22#
發(fā)表于 2025-3-25 10:50:37 | 只看該作者
Alja? Osojnik,Pan?e Panov,Sa?o D?eroskis that . for an irrational number . of finite type .. We show further that if . is an irrational number of constant type, then the discrepancy of the sequence . We extend the results much more by van der Corput’s inequality.
23#
發(fā)表于 2025-3-25 13:36:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:08 | 只看該作者
Pawel Matuszyk,Myra Spiliopoulou....1, .. ≥ 0, and the minimal polynomial of . is given by .. ? .... ? ... ? ... ? 1. From the substitution associated with the Pisot number ., a domain with a fractal boundary, called atomic surface, is constructed. The essential point of the proof is to define a natural extension of the .-transfor
25#
發(fā)表于 2025-3-26 00:04:11 | 只看該作者
Sarah D’Ettorre,Herna L. Viktor,Eric Paquet-functions in question are the most general E. Landau’s type ones that satisfy the functional equations with multiple gamma factors..Instead of simply applying Landau’s colossal theorem to . .(.), we start from the functional equation satisfied by .(.) and raise it to the .-th power. This, together
26#
發(fā)表于 2025-3-26 03:10:22 | 只看該作者
Kazuto Fukuchi,Quang Khai Tran,Jun Sakuma → 0. Our proof is based on the results on Barnes’ double zeta-functions given in the author’s former article [12]. We also prove asymptotic expansions of log Γ.Γ.(2.. ? 1, (.. ? 1, .)) , log ..(ε. ? 1, ..) and log ..(ε., ε., ε.), where .. is the fundamental unit of .% MathType!MTEF!2!1!+-% feaagCar
27#
發(fā)表于 2025-3-26 05:13:11 | 只看該作者
28#
發(fā)表于 2025-3-26 09:04:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:32:40 | 只看該作者
30#
發(fā)表于 2025-3-26 17:40:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓仁| 莱西市| 鄢陵县| 正宁县| 宜宾市| 横峰县| 彩票| 远安县| 兴仁县| 邹平县| 新源县| 高青县| 鄂托克旗| 洪泽县| 阳西县| 横峰县| 连山| 高雄县| 古田县| 花莲市| 花垣县| 库车县| 郸城县| 阳曲县| 太白县| 浦江县| 鸡泽县| 霍山县| 亳州市| 肥城市| 浪卡子县| 葫芦岛市| 泌阳县| 宜兰县| 和平区| 云龙县| 南宁市| 牟定县| 尖扎县| 蒲江县| 巍山|