找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Inequalities and Their Applications in PDEs; Yuming Qin Book 2017 Springer International Publishing Switzerland 2017 analytic ine

[復制鏈接]
樓主: 變更
21#
發(fā)表于 2025-3-25 05:16:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:54:56 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:03:40 | 只看該作者
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
Nietzsche and the History of Atheism,e shall use Theorem 2.3.11 to study the decay of solutions to 1D nonlinear wave equations. In Section 8.2, we shall exploit Theorem 2.3.14 to investigate the decay property of the solutions to the initial boundary value problem for a wave equation with a dissipative term. In Section 8.3, we shall ap
26#
發(fā)表于 2025-3-26 01:23:27 | 只看該作者
Discourses of Psychological Traumachapter consists of three sections. In Section 9.1, we shall first employ Lemma 1.5.4 to extend the decay results in [620] for a viscoelastic system to those for the thermoviscoelastic system (9.1.1) and then establish the existence of the global attractor for the homogeneous thermoviscoelastic syst
27#
發(fā)表于 2025-3-26 04:19:49 | 只看該作者
Discourses of Psychological Traumaconsists of seven sections. In Section 10.1, we apply Theorem 2.4.6 to investigate the blow-up of solutions to semilinear wave equations. In Section 10.2, we shall employ Theorem 2.4.22 to study the blow-up of solutions to semilinear wave equations.
28#
發(fā)表于 2025-3-26 10:30:55 | 只看該作者
29#
發(fā)表于 2025-3-26 15:48:46 | 只看該作者
Analytic Inequalities and Their Applications in PDEs978-3-319-00831-8Series ISSN 0255-0156 Series E-ISSN 2296-4878
30#
發(fā)表于 2025-3-26 17:25:13 | 只看該作者
,Methods and Nietzsche’s Portrait of Christ, shall use Theorems 2.1.14 and 2.3.7 to establish the uniform and decay estimates for flows in a semi-infinite straight channel. In Section 7.2, we shall exploit Theorems 2.3.17–2.3.21 to establish exact rates of convergence for nonlinear PDEs.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
古蔺县| 梁平县| 奉化市| 汕尾市| 洛川县| 德昌县| 丁青县| 原平市| 上思县| 平果县| 庆安县| 巴彦淖尔市| 肥乡县| 柳州市| 庆安县| 博白县| 大同市| 洛川县| 安庆市| 碌曲县| 黔西县| 镇平县| 延长县| 江都市| 扎囊县| 新竹县| 满洲里市| 遵义市| 手游| 时尚| 通州市| 卫辉市| 贵定县| 神木县| 涞水县| 浮山县| 岱山县| 上饶市| 江陵县| 英德市| 陆丰市|