找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Inequalities and Their Applications in PDEs; Yuming Qin Book 2017 Springer International Publishing Switzerland 2017 analytic ine

[復(fù)制鏈接]
樓主: 變更
21#
發(fā)表于 2025-3-25 05:16:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:54:56 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:03:40 | 只看該作者
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
Nietzsche and the History of Atheism,e shall use Theorem 2.3.11 to study the decay of solutions to 1D nonlinear wave equations. In Section 8.2, we shall exploit Theorem 2.3.14 to investigate the decay property of the solutions to the initial boundary value problem for a wave equation with a dissipative term. In Section 8.3, we shall ap
26#
發(fā)表于 2025-3-26 01:23:27 | 只看該作者
Discourses of Psychological Traumachapter consists of three sections. In Section 9.1, we shall first employ Lemma 1.5.4 to extend the decay results in [620] for a viscoelastic system to those for the thermoviscoelastic system (9.1.1) and then establish the existence of the global attractor for the homogeneous thermoviscoelastic syst
27#
發(fā)表于 2025-3-26 04:19:49 | 只看該作者
Discourses of Psychological Traumaconsists of seven sections. In Section 10.1, we apply Theorem 2.4.6 to investigate the blow-up of solutions to semilinear wave equations. In Section 10.2, we shall employ Theorem 2.4.22 to study the blow-up of solutions to semilinear wave equations.
28#
發(fā)表于 2025-3-26 10:30:55 | 只看該作者
29#
發(fā)表于 2025-3-26 15:48:46 | 只看該作者
Analytic Inequalities and Their Applications in PDEs978-3-319-00831-8Series ISSN 0255-0156 Series E-ISSN 2296-4878
30#
發(fā)表于 2025-3-26 17:25:13 | 只看該作者
,Methods and Nietzsche’s Portrait of Christ, shall use Theorems 2.1.14 and 2.3.7 to establish the uniform and decay estimates for flows in a semi-infinite straight channel. In Section 7.2, we shall exploit Theorems 2.3.17–2.3.21 to establish exact rates of convergence for nonlinear PDEs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌吉市| 镇赉县| 安图县| 松桃| 溧阳市| 台中县| 闸北区| 吉隆县| 仁寿县| 文化| 通化市| 礼泉县| 高要市| 前郭尔| 饶平县| 青田县| 莱芜市| 思茅市| 盐源县| 阿拉善盟| 杭锦后旗| 体育| 广平县| 惠来县| 会理县| 合水县| 庆城县| 班玛县| 库车县| 吉安县| 遵义县| 大石桥市| 长沙县| 上犹县| 娱乐| 西城区| 北京市| 卫辉市| 大荔县| 武隆县| 辽阳县|