找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Inequalities; Dragoslav S. Mitrinovi? Book 1970 Springer-Verlag, Berlin · Heidelberg 1970 Analysis.Finite.Ungleichung.calculus.di

[復(fù)制鏈接]
查看: 18910|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:15:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic Inequalities
影響因子2023Dragoslav S. Mitrinovi?
視頻videohttp://file.papertrans.cn/157/156523/156523.mp4
學(xué)科分類Grundlehren der mathematischen Wissenschaften
圖書(shū)封面Titlebook: Analytic Inequalities;  Dragoslav S. Mitrinovi? Book 1970 Springer-Verlag, Berlin · Heidelberg 1970 Analysis.Finite.Ungleichung.calculus.di
影響因子The Theory of Inequalities began its development from the time when C. F. GACSS, A. L. CATCHY and P. L. CEBYSEY, to mention only the most important, laid the theoretical foundation for approximative meth- ods. Around the end of the 19th and the beginning of the 20th century, numerous inequalities were proyed, some of which became classic, while most remained as isolated and unconnected results. It is almost generally acknowledged that the classic work "Inequali- ties" by G. H. HARDY, J. E. LITTLEWOOD and G. POLYA, which appeared in 1934, transformed the field of inequalities from a collection of isolated formulas into a systematic discipline. The modern Theory of Inequalities, as well as the continuing and growing interest in this field, undoubtedly stem from this work. The second English edition of this book, published in 1952, was unchanged except for three appendices, totalling 10 pages, added at the end of the book. Today inequalities playa significant role in all fields of mathematics, and they present a very active and attractive field of research. J. DIEUDONNE, in his book "Calcullnfinitesimal" (Paris 1968), attri- buted special significance to inequalities, adopting the met
Pindex Book 1970
The information of publication is updating

書(shū)目名稱Analytic Inequalities影響因子(影響力)




書(shū)目名稱Analytic Inequalities影響因子(影響力)學(xué)科排名




書(shū)目名稱Analytic Inequalities網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Analytic Inequalities網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Analytic Inequalities被引頻次




書(shū)目名稱Analytic Inequalities被引頻次學(xué)科排名




書(shū)目名稱Analytic Inequalities年度引用




書(shū)目名稱Analytic Inequalities年度引用學(xué)科排名




書(shū)目名稱Analytic Inequalities讀者反饋




書(shū)目名稱Analytic Inequalities讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:33 | 只看該作者
Analytic Inequalities978-3-642-99970-3Series ISSN 0072-7830 Series E-ISSN 2196-9701
地板
發(fā)表于 2025-3-22 08:34:31 | 只看該作者
5#
發(fā)表于 2025-3-22 09:25:48 | 只看該作者
Martin Mielick,Ryuko Kubota,Luke LawrenceA systematic and a detailed construction of the real number system can be found, for example, in the book [1] of E. ., or in the book [2] of L. W. . and G. ..
6#
發(fā)表于 2025-3-22 16:56:38 | 只看該作者
Martin Mielick,Ryuko Kubota,Luke LawrenceLet a = (a., ..., a.) be a given sequence of positive numbers. Then the harmonic mean H. (a) of the numbers a., ..., a. is defined as.their geometric mean G.(a) is defined as.and their arithmetic mean A. (a) is defined as..
7#
發(fā)表于 2025-3-22 21:05:48 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:07 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:18 | 只看該作者
Particular Inequalities, inequalities could also have been incorporated in two or more sections of this Part. All these inequalities can play a certain role in Pure and Applied Mathematics in the proofs of various theorems, or in some other ways.
10#
發(fā)表于 2025-3-23 08:56:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 衢州市| 山东省| 醴陵市| 沁源县| 二手房| 西丰县| 黄梅县| 井冈山市| 集贤县| 沁源县| 织金县| 萨嘎县| 五莲县| 顺平县| 浪卡子县| 连云港市| 天峻县| 丹凤县| 京山县| 军事| 宜都市| 怀远县| 江门市| 大港区| 麦盖提县| 上饶县| 东兰县| 霍州市| 古交市| 京山县| 灵宝市| 双峰县| 犍为县| 德江县| 灵山县| 嘉鱼县| 襄汾县| 沾益县| 巴中市| 通河县|