找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Extension Formulas and their Applications; Saburou Saitoh,Nakao Hayashi,Masahiro Yamamoto Book 2001 Springer Science+Business Med

[復(fù)制鏈接]
樓主: MIFF
11#
發(fā)表于 2025-3-23 13:37:54 | 只看該作者
12#
發(fā)表于 2025-3-23 15:37:14 | 只看該作者
https://doi.org/10.1007/978-1-4899-2040-9 and the Calogero model. To this end we regard the solution .(., ·) as an analytic function of time . and construct both a generalized Fourier cosine transform and a generalized Fourier sine transform. Moreover, we show an embedding theorem of Sobolev type as another application of these transforms.
13#
發(fā)表于 2025-3-23 18:50:55 | 只看該作者
,A Sampling Principle Associated with Saitoh’s Fundamental Theory of Linear Transformations,sociated with this series expansion is discussed..The sampling principle of Kramer is generalized in this context, and several examples are given where the kernels arise from polynomials of Meixner type.
14#
發(fā)表于 2025-3-23 23:42:41 | 只看該作者
15#
發(fā)表于 2025-3-24 03:33:32 | 只看該作者
Holomorphic Spaces Related to Orthogonal Polynomials and Analytic Continuation of Functions,to be extended are assumed in the hypotheses. Incidentally, new orthogonality properties of the Hermite and Laguerre polynomials and necessary and sufficient conditions for square summability with geometric weight .. of the coefficients in these polynomials are proved.
16#
發(fā)表于 2025-3-24 09:48:47 | 只看該作者
17#
發(fā)表于 2025-3-24 14:28:27 | 只看該作者
18#
發(fā)表于 2025-3-24 17:55:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:22:11 | 只看該作者
Analytic Extension Formulas and their Applications
20#
發(fā)表于 2025-3-25 02:59:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲县| 许昌县| 岢岚县| 富裕县| 临猗县| 乐至县| 天祝| 图木舒克市| 剑阁县| 祥云县| 陇川县| 应城市| 囊谦县| 孟连| 正镶白旗| 大厂| 隆回县| 武平县| 巨鹿县| 吴堡县| 衡南县| 南靖县| 民丰县| 江安县| 青州市| 康乐县| 南昌市| 祁东县| 宜川县| 牙克石市| 咸丰县| 比如县| 清原| 阳谷县| 江津市| 皋兰县| 云龙县| 镇雄县| 永平县| 茶陵县| 三明市|