找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Aspects of Convexity; Gabriele Bianchi,Andrea Colesanti,Paolo Gronchi Book 2018 Springer International Publishing AG 2018 Convex

[復(fù)制鏈接]
樓主: 租期
21#
發(fā)表于 2025-3-25 05:05:24 | 只看該作者
22#
發(fā)表于 2025-3-25 09:30:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:09:53 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:33 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:35 | 只看該作者
Dual Curvature Measures in Hermitian Integral Geometry,ture measures. Building on the recent results from integral geometry in complex space forms, we describe this algebra structure explicitly as a polynomial algebra. This is a short way to encode all local kinematic formulas. We then characterize the invariant valuations on complex space forms leaving
26#
發(fā)表于 2025-3-26 04:08:05 | 只看該作者
27#
發(fā)表于 2025-3-26 07:45:45 | 只看該作者
Crofton Formulae for Tensorial Curvature Measures: The General Case,r generalizations some of which also have continuous extensions to arbitrary convex bodies. In a previous work, we obtained kinematic formulae for all (generalized) tensorial curvature measures. As a consequence of these results, we now derive a complete system of Crofton formulae for such (generali
28#
發(fā)表于 2025-3-26 11:40:40 | 只看該作者
29#
發(fā)表于 2025-3-26 13:23:18 | 只看該作者
Discrete Centro-Affine Curvature for Convex Polygons,pectively, for polygons. These concepts of affine length are shown to be similar to their counterparts defined for smooth convex bodies in that they satisfy analogous affine isoperimetric type inequalities.
30#
發(fā)表于 2025-3-26 20:03:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
酒泉市| 石柱| 库尔勒市| 湖南省| 敦化市| 杂多县| 梁山县| 绍兴县| 将乐县| 阜新市| 镇宁| 洛南县| 平塘县| 平原县| 五家渠市| 桦南县| 涿鹿县| 水富县| 汝城县| 香河县| 凯里市| 汝阳县| 酒泉市| 元氏县| 连平县| 北票市| 从江县| 青浦区| 宿州市| 锦屏县| 宁陕县| 无极县| 阿拉善右旗| 新安县| 千阳县| 沁水县| 绥江县| 布尔津县| 会昌县| 香港| 和平区|