找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis, Partial Differential Equations and Applications; The Vladimir Maz‘ya Alberto Cialdea,Paolo Emilio Ricci,Flavia Lanzara Conferenc

[復制鏈接]
樓主: Reticent
21#
發(fā)表于 2025-3-25 04:24:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:05:21 | 只看該作者
23#
發(fā)表于 2025-3-25 12:23:43 | 只看該作者
,Solvability Conditions for a Discrete Model of Schr?dinger’s Equation, . satisfying .=.+α. Other sufficient conditions are derived. In the converse direction, if α≥ 0 and the equation .=.+α has a solution .≥0, then . and ..ω-a.e. These results are obtained from bilateral estimates for the kernel of the Neumann series ..
24#
發(fā)表于 2025-3-25 17:25:09 | 只看該作者
An Algebra of Shift-invariant Singular Integral Operators with Slowly Oscillating Data and Its Applcillating Carleson curve. By applying the theory of Mellin pseudodifferential operators, Fredholm symbol calculi for these algebras and Fredholm criteria and index formulas for their elements are established in terms of their Fredholm symbols.
25#
發(fā)表于 2025-3-25 22:19:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:19:43 | 只看該作者
27#
發(fā)表于 2025-3-26 05:41:47 | 只看該作者
Edwin Ordoukhanian,Azad M. Madni special case with no dependence on the third spatial coordinate our model is equivalent to the Dirac equation. The crucial element of the proof is the observation that our Lagrangian admits a factorisation.
28#
發(fā)表于 2025-3-26 11:07:25 | 只看該作者
29#
發(fā)表于 2025-3-26 15:47:36 | 只看該作者
Alberto Cialdea,Paolo Emilio Ricci,Flavia LanzaraDedicated to the 70th birthday of Vladimir G. Maz‘ya.Contributions by top-notch researchers in the fields of interest of V.G. Maz‘ya.Includes supplementary material:
30#
發(fā)表于 2025-3-26 18:57:45 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/a/image/156497.jpg
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 12:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
潍坊市| 九龙县| 湘潭县| 松溪县| 江油市| 新乡市| 南陵县| 涡阳县| 安义县| 广平县| 炉霍县| 博野县| 大厂| 长沙县| 山西省| 达孜县| 嘉禾县| 十堰市| 新民市| 吉木乃县| 芜湖市| 根河市| 通许县| 合水县| 右玉县| 共和县| 秦皇岛市| 丰镇市| 宜川县| 剑川县| 诏安县| 长垣县| 水城县| 辽阳市| 富顺县| 太和县| 红安县| 西宁市| 新河县| 南和县| 张北县|