找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis on Lie Groups with Polynomial Growth; Nick Dungey,A. F. M. Elst,Derek W. Robinson Textbook 2003 Birkh?user Boston 2003 Algebraic

[復(fù)制鏈接]
查看: 18490|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:29:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis on Lie Groups with Polynomial Growth
影響因子2023Nick Dungey,A. F. M. Elst,Derek W. Robinson
視頻videohttp://file.papertrans.cn/157/156478/156478.mp4
發(fā)行地址Completely self-contained work, including a review of well-established local theory for elliptic operators and a summary of the essential aspects of Lie group theory.Numerous illustrative examples.App
學(xué)科分類Progress in Mathematics
圖書封面Titlebook: Analysis on Lie Groups with Polynomial Growth;  Nick Dungey,A. F. M. Elst,Derek W. Robinson Textbook 2003 Birkh?user Boston 2003 Algebraic
影響因子.Analysis on Lie Groups with Polynomial Growth. is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one...This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory..
Pindex Textbook 2003
The information of publication is updating

書目名稱Analysis on Lie Groups with Polynomial Growth影響因子(影響力)




書目名稱Analysis on Lie Groups with Polynomial Growth影響因子(影響力)學(xué)科排名




書目名稱Analysis on Lie Groups with Polynomial Growth網(wǎng)絡(luò)公開度




書目名稱Analysis on Lie Groups with Polynomial Growth網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis on Lie Groups with Polynomial Growth被引頻次




書目名稱Analysis on Lie Groups with Polynomial Growth被引頻次學(xué)科排名




書目名稱Analysis on Lie Groups with Polynomial Growth年度引用




書目名稱Analysis on Lie Groups with Polynomial Growth年度引用學(xué)科排名




書目名稱Analysis on Lie Groups with Polynomial Growth讀者反饋




書目名稱Analysis on Lie Groups with Polynomial Growth讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:07:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:42 | 只看該作者
https://doi.org/10.1007/978-1-4612-2062-6Algebraic structure; Group theory; Interpolation; Lie group; manifold
地板
發(fā)表于 2025-3-22 05:33:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:55:09 | 只看該作者
6#
發(fā)表于 2025-3-22 13:05:39 | 只看該作者
7#
發(fā)表于 2025-3-22 19:38:05 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:14 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:59 | 只看該作者
10#
發(fā)表于 2025-3-23 08:19:58 | 只看該作者
,Wettbewerblicher Rahmen für PPP,oups . of polynomial growth. The eventual aim is to understand the global properties of the kernels and the global geometry of the group. The starting point is the observation that if . is simply connected, then . is the semidirect product . × . of a compact Levi subgroup . and the group radical ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 06:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 宜阳县| 拜城县| 商河县| 绵竹市| 香河县| 鹰潭市| 车险| 宣威市| 桦南县| 新晃| 吉首市| 奉节县| 抚州市| 治多县| 金山区| 罗田县| 保定市| 剑川县| 定襄县| 拉孜县| 武清区| 尤溪县| 奎屯市| 内黄县| 黔西| 师宗县| 德钦县| 临海市| 塘沽区| 海伦市| 蓝山县| 双峰县| 信丰县| 钟山县| 东莞市| 桃园市| 武功县| 玉溪市| 广水市| 汶川县|