找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of the Navier-Stokes Problem; Solution of a Millen Alexander G. Ramm Book 2023Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 7260|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:56:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis of the Navier-Stokes Problem
期刊簡稱Solution of a Millen
影響因子2023Alexander G. Ramm
視頻videohttp://file.papertrans.cn/157/156476/156476.mp4
發(fā)行地址Explains the background and history of the Navier-Stokes Problem.Provides mathematical analysis of the Navier-Stokes Problem in R3 without boundaries.Proves that the Navier-Stokes equations are physic
學(xué)科分類Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: Analysis of the Navier-Stokes Problem; Solution of a Millen Alexander G. Ramm Book 2023Latest edition The Editor(s) (if applicable) and The
影響因子.This book revises and expands upon the?prior edition,? The?Navier-Stokes Problem. The?focus of?this book is to?provide a mathematical analysis of?the?Navier-Stokes Problem (NSP) in R^3 without boundaries.? Before delving into?analysis, the?author begins by?explaining the?background and history of?the?Navier-Stokes Problem. This edition includes new analysis and an? a priori? estimate of?the?solution. The?estimate proves the?contradictory nature of?the?Navier-Stokes Problem. The?author reaches the?conclusion that the?solution to?the?NSP with?smooth and rapidly decaying data cannot exist for?all positive times. By proving the?NSP paradox, this book provides a solution to?the?millennium problem concerning the?Navier-Stokes Equations and shows that they are physically and mathematically contradictive..
Pindex Book 2023Latest edition
The information of publication is updating

書目名稱Analysis of the Navier-Stokes Problem影響因子(影響力)




書目名稱Analysis of the Navier-Stokes Problem影響因子(影響力)學(xué)科排名




書目名稱Analysis of the Navier-Stokes Problem網(wǎng)絡(luò)公開度




書目名稱Analysis of the Navier-Stokes Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis of the Navier-Stokes Problem被引頻次




書目名稱Analysis of the Navier-Stokes Problem被引頻次學(xué)科排名




書目名稱Analysis of the Navier-Stokes Problem年度引用




書目名稱Analysis of the Navier-Stokes Problem年度引用學(xué)科排名




書目名稱Analysis of the Navier-Stokes Problem讀者反饋




書目名稱Analysis of the Navier-Stokes Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:13:45 | 只看該作者
Book 2023Latest editionl positive times. By proving the?NSP paradox, this book provides a solution to?the?millennium problem concerning the?Navier-Stokes Equations and shows that they are physically and mathematically contradictive..
板凳
發(fā)表于 2025-3-22 03:21:40 | 只看該作者
1938-1743 oundaries.Proves that the Navier-Stokes equations are physic.This book revises and expands upon the?prior edition,? The?Navier-Stokes Problem. The?focus of?this book is to?provide a mathematical analysis of?the?Navier-Stokes Problem (NSP) in R^3 without boundaries.? Before delving into?analysis, the
地板
發(fā)表于 2025-3-22 06:41:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:11:33 | 只看該作者
Les Gallo-Silver,David Bimbi,Michael Rembis.. Taking the Laplace transform of (.) one gets . where formula (A2.13) was used: . Here . is the gamma function and formula (.) is valid classically for .; this formula is valid for all complex . except ., by analytic continuation with respect to . because . is analytic in . except for the points .
6#
發(fā)表于 2025-3-22 15:51:31 | 只看該作者
Analysis of the Navier-Stokes Problem978-3-031-30723-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
7#
發(fā)表于 2025-3-22 17:38:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:27 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:27 | 只看該作者
https://doi.org/10.1057/978-1-137-48769-8The NSP consists of solving the following equations. .where ..
10#
發(fā)表于 2025-3-23 06:48:43 | 只看該作者
Les Gallo-Silver,David Bimbi,Michael RembisOne of the . estimates was formulated and proved in Lemma?., namely, estimate (.): . where .(.,?.) is a solution to the NSP (.)–(.). It was proved under the assumption . The other basic . estimate is formulated in Theorem?.. Let us use this result and the Parseval’s equation to derive the following theorem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茂名市| 莱州市| 华阴市| 丰镇市| 福建省| 玉屏| 韩城市| 奈曼旗| 岑巩县| 砀山县| 上饶市| 磐石市| 电白县| 平武县| 虞城县| 平阳县| 稻城县| 连南| 灵宝市| 仁布县| 海门市| 临沧市| 江源县| 隆回县| 临泽县| 上蔡县| 灵山县| 弥勒县| 高阳县| 托克托县| 曲阜市| 宝鸡市| 屏边| 巴楚县| 沙雅县| 若羌县| 尖扎县| 大宁县| 汾阳市| 关岭| 江口县|